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Abbreviations    

 

Term Definition 

Annual average demand Average electricity demand over the course of one year, expressed in 

megawatt (MW). 

In this report, annual average demand refers to the annual average measured 

based on average demand during five-minute intervals.  

Annual peak (or 

maximum) demand  

The highest five-minute average electricity demand of any five-minute interval 

during one year, usually expressed in MW. 

Block load Block loads are typically large industrial customers whose electricity demand is 

large. When connected to the Western Power network, they create a large 

change in electricity consumption and demand for the relevant part of the 

network. The forecast method accounts for the influence of these large users 

using an adjustment to the forecast produced for small and medium 

customers. Once added to demand growth for small and medium size 

customers, a block load introduces an often-permanent step-change into an 

otherwise smooth trend. 

Coincident and non-

coincident demand 

See section 0 on page 33 for the definitions. 

Day-time Day-time is defined as the day hours from 8am to 6pm. 

kWh Kilowatt-hour is a basic measuring unit of electric energy equal to one kilowatt 

of power supplied to or taken from an electric circuit steadily for one hour.  

One kilowatt-hour can power ten 100 watt light bulbs for one hour. 

Load factor The ratio of annual average demand to annual peak demand. 

This is a partial indicator of network utilisation. 

MVA MVA stands for Mega-Volt-Amps and is a measure of apparent power. If the 
total load requirement is 1,000 volts and 5,000 amps (1,000 x 5,000 = 

5,000,000 VA) it can be expressed as 5 MVA. Apparent power takes into 

consideration both the resistive and reactive load. 

MW Megawatt is a measure of the active component of electrical demand and 

represents the capacity to deliver energy. 

MWh Megawatt-hour is a measure of energy delivered.   For example, one MWh of 

electricity can power ten thousand 100 watt light bulbs for one hour. 

NMI NMI or the National Metering Identifier is a unique identifier that identifies a 

supply or connection point and is assigned by the providing distributor. 

Night-time Night-time is defined as the hours from 6pm to 8am. 
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Term Definition 

PoE Probability of exceedance (PoE)  is a statistical measure that describes the 
probability that a particular value will be met or exceeded – e.g., a PoE 10 

forecast is expected to be exceeded 10 per cent of the time i.e. one year in 10. 

And a PoE 20 forecast is expected to be exceeded 20 per cent of the time i.e. 

one year in five. 

Serial correlation Serial correlation is the relationship between a given variable and itself over 

various time intervals. Serial correlations are often found in repeating 

patterns, when the level of a variable effects its future level. 

Summer Summer refers to the period from 1 December to 31 March (inclusive). 

SWIN South West Interconnected Network is all the transmission and distribution 

components of the electricity system comprising the Western Power Network 

and other transmission and distribution assets owned and operated by other 

parties. 

SWIS South West Interconnected System is the entire electricity system covering the 

south west of Western Australia. It comprises the Western Power Network, 

other transmission and distribution assets owned and operated by other 

parties than Western Power and all generators. 

Western Power Network Is the transmission and distribution element of the SWIN that is owned and 

operated by Western Power. 

Winter Winter refers to the period from 1 May to 31 August (inclusive). 
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1. Introduction 

Electricity demand drives the amount of investment in Western Power network and many operational 

decisions for the network. Every year Western Power develops forecasts of peak demand and energy 

consumption to assist with its planning processes. These plans inform decisions to ensure the network will 

continue to deliver a safe, reliable and efficient supply of electricity to customers. 

Western Power’s forecast models cover three planning horizons: 

Short-term forecasts covering hours up to several days: these forecasts assist with the operation of the 

network. 

Medium-term forecasts covering forecast horizons up to 10 years: these forecasts drive network plans 

and development strategies and are used in the setting of network tariffs as part of the Access 

Arrangements mechanism. 

Long-term forecasts covering forecast periods extending to 50 years: these forecasts are primarily 

‘what-if’ scenarios that explain plausible alternative futures based on several assumptions 

including customer connections growth, changes to consumer behaviour and energy services, and 

availability of alternative energy technologies. These scenarios are used in the investment 

decision making process.  

This report covers the method used for the development of medium-term forecasts. Within Western Power 

the Regulation and Investment Assurance, Finance Treasury and Risk, and Grid Transformation functions 

require the preparation of forecasts to assist with: 

 the review of the annual price list as part of the access arrangement. Customer connection, energy 

export and maximum demand forecasts determine expected revenues. 

 the budgeting of maintenance projects. 

 Network capacity assessment and network planning. Forecasts allow Western Power to assess growth 

requirements. 

1.1 Forecasting approach 

Western Power develops the medium-term forecast models with a segmented ‘middle-out’ approach. 

Electricity customers have different consumption and demand patterns. To suitably account for the effect 

of consumption drivers, forecast models segment customers into four main categories based on their tariff 

classes: residential, small business, medium business, and large business. Western Power also produces 

forecast at lower hierarchy levels. Forecasts at different hierarchy levels are reconciled to ensure they 

provide consistent results – forecasts produced at the bottom of the hierarchy when aggregated provide 

results consistent with those produced at higher levels.  

Figure 1.1 depicts the forecast hierarchy. At the lowest levels, the forecast of energy consumption 

categorises customers based on their connection to each substation and tariff. Tariff categories are 

consistent with those specified in the Western Power’s Access Arrangements.1 For residential customers 

this comprises forecasts produced for customers with time-of-use and anytime energy tariffs. For Business 

 

1  Most recent tariffs are available in the 2017/18 Price List, Amended proposed access arrangement, 28 February 2019, 
(available online).  

https://www.erawa.com.au/cproot/20196/2/ERA-Approved---Appendix-F.1---2017-18-Price-List.pdf
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HV and Business LV customers forecasts are produced based on contract maximum demand, metered 

demand and energy-based tariffs  

Forecasts of minimum and maximum demand are produced at system, load area, and substation levels 

only. For short- and medium-term forecast horizons, demand forecasts at tariff levels are not typically 

required. They also cannot be produced with a reasonable level of accuracy, because for many customers 

demand is not currently measured frequently. 

Figure 1.1. Forecast hierarchy overview  

System

Small 
business

Residential
Medium 
business

Large 
business

Load Area

Substation

Tariff

 

Many inter-related changes in energy supply technologies, consumer behaviour and consumption patterns 

underpin changes to electricity demand and consumption. Detailed middle-out forecast models use 

separate forecasts of main underlying variables that drive the consumption of electricity. When combined, 

these underlying forecasts provide total electricity demand and consumption on the Western Power 

network. This approach can suitably and transparently incorporate the effect of factors that drive changes 

to electricity demand and consumption.  Figure 1.2 depicts the overall bottom up approach to forecasting 

demand and consumption. 
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Figure 1.2. Overall approach to forecasting demand and energy consumption 
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The method starts with a forecast of customer connections based on regional economic factors and tariff 

churn based on relative network tariff prices. It then produces a forecast of PV uptake based on connection 

growth and retail tariff prices, which explain all movements in uptake over the last decade. Then a forecast 

of energy exported from Western Power network to customers is produced using several statistical models. 

Explanatory variables for energy forecasts include the results of two underlying forecasts: 

Forecast of customer connections 

Forecast of energy imports from behind-the-meter solar photovoltaic panels 

Subsequently Western Power uses a systematic approach to determine the potential ‘block loads’ that are 

to be included in the energy consumption and demand forecasts. The method considers the effect of block 

loads – new customers or changes that represent a material increase or decrease in both energy and load 

demand – using a post-modelling adjustment process. A block load introduces an often-permanent step-

change into demand and energy forecasts. Such step-changes occur infrequently and are not easily 

accommodated by most statistical methods. 

The rapid uptake of solar PV installations and energy efficiency improvements have had a material effect on 

both customers’ demand for network-supplied electricity and the amount of energy exported from the 

network to customers. Forecast models should suitably account for both the amount and timing of energy 

generated by solar PV installations.  The revised method provides for internal consistency between the 

forecast of maximum demand and those for the number of connections, solar PV capacity installed and 

energy exports to customers.  

The forecast process also includes forecasts of minimum demand. Increased installation of rooftop and large-

scale solar photovoltaic generators is increasingly contributing to challenges for the operation of the network 
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when demand in the network is low – particularly when the sun is shining and generation from solar 

photovoltaic generators is large, and customers’ electricity demand is low. 

This document is organised as follows: 

Section 2 briefly articulates the principles guiding main decisions in constructing forecasts 

Section 3 explains the data preparation and quality assurance process 

Section 4 provides a conceptual overview of the structure and organization of the underlying load 

growth forecast. 

Section 5 describes the methods used to forecast customer connections, energy and Solar PV forecasts.  

Section 5 explains how the method used the extreme value theory to create maximum (and minimum) 

demand forecasts. 

Section 6 explains the process for forecasting energy and demand for block loads 

Section 7 explains the method for forecasting reactive power in the network 

Section 9 explains the forecasting process and reporting  
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2. Forecasting principles 

Western Power has established principles to guide the development of forecast models. These principles 

guide choices about how the forecasts are done, particularly where there are trade-offs in developing 

them. For example, there are trade-offs between simplicity and comprehensiveness. More comprehensive 

forecasts might improve the accuracy of models but typically entail a greater level of complexity and 

increase costs. While simple models can reduce administration costs and improve forecasting process 

transparency, they may not provide reasonable results in all applications. 

Western Power considers three primary principles in its forecasting: accuracy, transparency and evidence-

based decisions. Western Power strives to deliver forecasts that are reasonably accurate and unbiased, 

transparent and repeatable, and evidence-based and data-driven. 

In doing so it identifies and incorporates main factors driving forecasts and makes use of the best available 

data. The forecasting process checks validity of forecasts by running statistical tests and ensures 

consistency of forecasts at different levels of aggregation. For the medium-term forecasts particularly, the 

method ensures consistency between energy consumption, customer count, imported energy from solar 

PVs, and maximum and minimum demand forecasts. 

2.1 Application of principles in practice 

Western Power continually improves the quality of its forecasts to ensure forecasts do not contain any 

systematic bias. A primary source of improvement is the diagnosis of existing forecasts using observed 

data. Western Power monitors the accuracy of past forecasts using pre-defined accuracy benchmarks; 

those forecasts not meeting forecast error benchmarks are diagnosed for possible causes of inaccuracy. 

Any evidence of bias is incorporated in adjustments made in the design of new forecast models or the type 

and quality of the data relied on to calibrate forecast models. 

The forecasting method aims for transparency and repeatability by employing good industry practices 

including development of work instructions, record keeping and documentation. The forecast process 

includes clear work instructions that adequately describe each task performed in producing the forecasts.  

The process also clearly identifies the source of information and maintains adequate records of input data 

used. Model development process uses standard practices and techniques – e.g. separation of source data, 

intermediate calculations and final output – and computer scripts are presented in a readable style that 

avoid use of hard coded values in the body of scripts. 

Western Power assesses the credibility of data to ensure it can be relied on for forecasting purposes. This 

assessment starts with identifying the source of data and an assessment of the credibility of the data 

sources. The relevance of data is then determined using objective and pre-defined processes to ensure low-

quality data does not create any biases in the forecasts.  



 

 

Page 6 

3. Data preparation and quality assurance 

Western Power undertakes a thorough data preparation and validation process using several comparisons, 

tests and root cause analyses.  

The data preparation and quality assurance process is covered by NTWK.1.2.1.1 ‘Validate forecasting data’ 

and describes the data validation process in the Process Library, as shown in Figure 3.1. The process 

produces data that feeds into NTWK.1.2.1.3 ‘Develop underlying load growth energy and customer 

numbers forecasts’ and NTWK.1.2.1.4 ‘Develop underlying load growth forecasts. 

Figure 3.1. Responsibilities for extracting and validating data   

 

The main steps in the process are: 

 Extract and validate data 

 Approve validated data. 

Data validation is a test-driven process. The first test is to establish expectations about the data and then 
examine the data to determine if a data extract matches those expectations. If the data extract satisfies a 

specific test, it is accepted without further investigation. Otherwise, the extract is investigated to explain 

why the data fails to satisfy the test. On failure of a test, Western Power contacts relevant subject matter 

experts within the business for advice and assistance in investigations and developing remedies.  

Tests against established benchmarks 

The first round of tests is based on comparisons of a data extract with the last validated data set for the 

overlapping part of data. Where there is no overlapping history, other measures are implemented based 

on: 

 comparisons with an alternative credible data source 

 more detailed benchmarks using past data properties. For example, queries are developed to assess if 

the latest data exhibits the same properties as the earlier validated data, and 

 any established rules based on logical reasoning. 

NTWK.1.2.1.1 
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The second round of tests is based on determining the plausibility of the data. This involves statistical 

profiling the first and second order differences of each five-minute interval (which are a measure of 

ramping) and comparing them with the distribution of all movements to determine the likelihood that any 

given minimum or maximum reading was the result of an error or switching event. The results are 

calibrated to minimise the number of false positives by guaranteeing that no data points from the system 

minimum and system maximum days are excluded. The rationale being that these days are known to be 

extreme, and therefore that they are likely to be the maximum days of ramping. 

3.1 Tolerance for imperfection 

The data that Western Power relies on for establishing forecasts may contain imperfections – for example, 

due to measurement errors – as with any data set containing measurements. Historic data extracts are 

validated to ensure that they are sufficiently clean to produce forecasts that are likely to remain within 

acceptable accuracy ranges. Although imperfections in data sets can create bias in forecasts, the cost of 

removing imperfections can be prohibitively large. The validation process should suitably account for 

additional costs of improving the quality of data. 

As a broad guideline, the forecasting process deems an imperfect data set as valid for forecasting purposes 

if: 

It can be demonstrated that the forecasting methods are unlikely to be biased as a result of the 

inherent data imperfections. 

The imperfections are known and can be effectively mitigated before the data is relied on for 

forecasting purposes.  

In practice, the established heuristic is acceptance of the data where there is less than a two per cent 

variance with established benchmarks. This is known as the materiality test. Where this test is not satisfied, 

a root cause analysis is conducted, as explained in section3.2 

3.2 Root cause analysis 

As the term suggests, root cause analysis identifies the root causes of faults. There is a distinction between 

a causal factor and a root cause. The defining attribute is that once a root cause has been removed, the 

fault ceases to exist. In the context of energy volume and connection numbers data, a double count in a 

query script is a good example of a root cause. Effective root cause analysis: 

is performed systematically 

is backed up by evidence, typically specimens illustrating a source of the fault 

has an adequate description of each problem 

ensures recommended corrective actions are undertaken. 

Problems are identified when a formal comparative benchmark test fails. Comparative tests are established 

in a top-down order. An example of a comparative test relating to reconciliation of Balcatta zone substation 

data is presented below. 
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Box 1. Comparative benchmark test example 

 

 

 

 

Comparative benchmark testing involves comparing latest data extracts to previous extracts and cross-

matched against similar extracts from other sources (e.g. MBS, NetCIS extracts can be cross-matched 

against SCADA data for at the Load Area level). The test fails if the average difference is outside a 

prescribed tolerance (e.g. more than 2%). On failure, the following activities are undertaken:  

 

Comparative benchmark testing involves comparing latest data extracts to previous extracts and cross-

matched against similar extracts from other sources (e.g. extracts from metering and customer care and 

billing system can be cross-matched against SCADA2 data for a load area level).3 The test fails if the average 

difference is outside a prescribed tolerance (e.g. more than two per cent). On failure, the following 

activities are undertaken:  

1. Determine if a data correction has been implemented since the last extract. If so, document the 

previously unidentified problem with the previous extract. 

2. If there is no correction implemented: 

Examine the time series of energy values to determine if there has been a step-change in energy 

numbers at a point in time. If this is identified, check that this is genuine, e.g. confirm that there 

was a new customer that used that energy. 

Compare connection numbers. If this test passes, then there must be erroneous meter readings. 

If this test fails, then there is likely to be a problem with meter counts. Follow up with a test of the 

Data Generating Process. This assumes that the latest data extract will exhibit the same data 

properties as previous extracts based on any one of the following: 

– Box plot overlay of the latest data points. Latest monthly observations should fall within 

the “box”. 

– Similar seasonal pattern as defined by the SAS DECOMP procedure. Compare the 

seasonal patterns available in the seasonal component (SAS SC Component). 

– Similar correlations and Augmented Dickey Fuller test results to those as previously 

established. 

 

2  The SCADA (Supervisory Control and Data Acquisition) system is Western Power's system for managing the electricity 
network, both day to day and in emergencies. The system monitors and records network data. 

3  This involves using data retrieved from NetCIS, which is Western Power’s core customer care and billing system. NetCIS stores 
most of the company’s customer information and interactions and is used daily throughout the organisation. It is the system 

used to calculate and invoice network access charges and bill these charges to electricity retailers. 

Measurement error is a primary risk when forecasting demand. Examples of measurement error 

include: occasional SCADA sensors fail; incorrect calibration and reassignment of measurement 

tags with a lag in updates of database records. 

For these reasons, Western Power regularly and systematically validates and corrects data before 

use in forecasting processes. Determining whether measurements can be considered to be correct 

involves a series of cross-checks across SCADA measurements of electricity flows entering, 

transitioning and exiting zone substations. In addition, Western Power cross-checks SCADA and 

metering data by zone substation. 

This process identified that approximately 2,000 Balcatta zone customers were incorrectly 

configured in the metering data. Correcting this led to a material re-evaluation of trend across 

Balcatta zone substations with respect to the neighbouring zone substations. 
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3.3 Data validation and quality checking process 

Western Power follows good industry practice and has implemented a robust data validation and quality 

checking process. The Senior Forecasting Analyst checks to ensure that: 

data validation process has been followed by the analysts preparing the data 

data either conforms to established benchmarks within prescribed tolerances or there is an evidence-

based reason for identified anomalies. 

Below is an example of the data validation process used in 2017, using the Wundowie substation as an 

example. 

Figure 3.2. Wundowie (WUN) substation data from the validation process 

 

In this example, the net energy sales suitably align with the substation transformer throughput, having 

regard to distribution losses and metering inaccuracies. The alignment demonstrated in Wundowie 

substation data provides a high degree of confidence in the metering and SCADA data for all forecasting 

including customer connections, solar PV, energy and demand.
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3.4 Forecasting Approach 

Forecasting approach and input data Western Power applies time series statistical models to most of the 

commercial and residential customer connection and energy and solar PV forecasts. Many of these 

forecasts are produced using automatic functions of the forecasting software platform. The forecast 

process also allows for manual construction of some residential and commercial forecasts where required, 

typically as a correction to an automatically generated forecast. For instance, Western Power manually 

adjusts forecasts for industrial customers when advised of changes in demand, because these forecasts are 

typically flat (i.e. have no growth). 

Western Power’s medium-term forecasts do not include all possible anticipated technological innovations 

(e.g. electric vehicles and batteries); however, they are being monitored and may be included in future 

forecasts if received evidence suggests that inclusion would be prudent. 

3.5 Time series statistics methods 

All models for customer connection, energy and solar PV forecasts are created using SAS and R as discussed 

in process NTWK.1.2.1.6 Develop demand forecast. These models employ three broad styles of time series 

forecast models: 

Autoregressive integrated moving average (ARIMA)  

Unobserved components models 

Multivariate regression.4  

These tools use best practice forecast diagnostic and model building processes.  

The forecasts are produced in a hierarchy, which permits the use of both space and time dimensions to 

maximise model flexibility, resulting in improved precision in model coefficients. In addition, the forecasts 

are reconciled so that the forecast sub-groups add up to the total.  

In 2016 and 2019, several new tariffs were introduced with customers reallocated from other tariffs. For 

example, in 2015 residential customers who owned solar photovoltaic power systems were allocated to 

RT1 tariff. In 2016, these customers were reallocated to the tariff RT13. The reallocation of energy volume 

and customer numbers to the new tariffs impedes comparison of tariff-based customer numbers and 

energy volumes between forecast reports. To overcome this issue an approximate reconstruction of the 

previous tariff structures can be produced for the purposes of comparison. 

While most of the forecasts are produced automatically, forecast models can (and have been) manually 

constructed and selected. SAS and R provide a wide array of diagnostic test results that are relatively easy 

to interpret but do require a high degree of expertise to use effectively. 

3.6 Econometric forecasts  

Given that a large number and wide variety of statistical models are used to produce the forecasts, it is not 

practical to describe each forecast model applicable to each tariff. Instead, this report describes the models 

employed within broader stylistic structures and themes. 

 

4  Multivariate regression is a technique that estimates a single regression model with more than one outcome variable. 
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3.6.1 Benefits of employing reduced form models 

In the past Western Power produced forecasts of customer counts and energy consumption based on long-

term structural models. Those models provided direct estimates of the effect of economic variables on 

energy and demand forecasts. They, for example, modelled customer connections and energy consumption 

based on responses to variation in electricity tariffs and income or economic activity. 

While such models are highly desirable for long-term business planning, directly estimated structural 

models often perform poorly as short- or medium-term forecast models. Several statistical issues 

contribute to their poor performance including incorrectly specified dynamics and insufficient variation in 

explanatory variables, such as tariffs.  

To overcome such problems, Western Power has employed time series methods. Time-series models are 

reduced-form models as opposed to structural models.5 That means, for example, that the estimated 

regression coefficients are not economic parameters such as long-run price and income elasticities, as is the 

case for structural models.  

The benefit of employing reduced form models is that data-driven diagnostic and model building methods 

capture the short-run dynamics contained in the data. For example, most of the monthly energy volume 

series exhibit a high degree of serial correlation. This means that ARIMA models, which exploit serial 

correlation, produce reasonably accurate short-term forecasts. 

3.6.2 Underlying drivers of electricity demand 

This section provides a description of the external (i.e. independent) variables included in the forecast 

training data set6. Selection of these variables is justified by economic or demonstrated statistical 

relevance. Other variables could also have been included but their historical values or forecasts are not 

available.  

The following categories apply to the selected external variables shown in Table 1: 

economic activity: variables that measure the level of activity in the economy, such as gross regional 

product, regional final demand and consumer price index.  

Electricity retail price: volumetric and daily components of the electricity price 

substitution of network electricity: to capture any influence of alternatives to network delivered 

electricity. 

Table 1. External variable description 

Category Variable Description 

Economic Regional final demand SWIS regional final demand forecasts (in million $) (annual, 

monthly and percentage change) prepared by BIS Oxford 

Economics. 

Economic Gross regional product SWIS gross regional product forecasts (in million $) (Annual, 

Monthly and percentage change) prepared by BIS Oxford 

Economics. 

 
5 See James D. Hamilton (1994), Time Series Analysis, Princeton University Press, pp. 244–246 
6 The training data set, also known as the estimating data set, is the data used to calculate forecast model parameters 

file:///C:/Users/N037069/AppData/Roaming/OpenText/OTEdit/EC_edmprod/c55525210/James
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Category Variable Description 

Price Tariff A1 Synergy residential retail tariff, variable (in $/kWh) and fix 
(in $/day) parts of the tariff. Forecast tariffs sourced from 

budget papers. Tariffs beyond the budget paper forecast 

horizon were assumed to remain constant in real terms.  

Price Tariff L1 Synergy business retail tariff, variable (in $/kWh) and fix (in 

$/day) parts of the tariff. Forecast tariffs sourced from 

budget papers. Tariffs beyond the budget paper forecast 

horizon were assumed to remain constant in real terms.  

Substitution PV count Count of customers with a bidirectional network tariff 

Substitution PV capacity Sum of PV inverter capacity (in MW) 

As indicated above there are many variables included in the estimating data set. Many of these variables 

are highly correlated, so most of Western Power’s forecast models only include a small subset of these 

variables based on a balance of goodness of fit and forecasting accuracy criteria.  

The variables and associated data are from published documents by Western Australian Government 

agencies, and Australian Bureau of Statistics. Western Power engaged BIS Oxford Economics7 to provide 

estimates and forecasts of gross regional product and final demand based on the area covered by the 

Western Power network. 

Gross regional product is a broad measure of economic activity that typically accounts for a small 

component of monthly variation in electricity demand. Nevertheless, it will have an influence on the 

medium- to long-term trend in electricity demand since electricity is one of the inputs for productive 

economic activity.  

Note that other economic measures of overseas demand for Western Australia’s exports (such as exchange 

rates, the terms of trade, commodity prices etc.) are also likely to be influential on electricity demand. 

However, the relatively short time series of electricity demand impedes precise estimation of the impact on 

electricity demand. Moreover, the high volatility of these series and the absence of credible long-term 

forecasts for these additional economic variables limit the suitability of their use. 

Electricity prices have an inverse relationship with electricity demand, or at least network delivered 

electricity demand. Assuming fixed customers’ budgets in the short-term, a higher price (i.e. higher 

electricity tariffs) should have a persistent dampening effect on electricity demand. This is an important 

factor for long-term forecasting. 

An issue limiting the usefulness of the tariff is limited variation in prices. Typically, consumer electricity 

prices update just once a year. With just nine years of time series data, it is difficult to estimate a 

statistically precise relationship between electricity prices and the demand for network delivered 

electricity.  

 
7 BIS Oxford Economics “SWIS REGION & WESTRN AUSTRALIA ECONOMIC FORECASTS TO FY2031”.   SWIS Region & WA Forecasts - 

4.11.21.docx (http://edm.westernpower.com.au/otcs/cs.exe?func=ll&objaction=overview&objid=61773829) 

http://edm.westernpower.com.au/otcs/cs.exe?func=ll&objaction=overview&objid=61773829
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3.7 Prospect of further substitution via new technology 

As of 2017, speculation about a mass adoption of other network competing technologies was intensified. At 

the time it was expected that a rapid adoption of battery storage systems could materially decrease 

electricity demand delivered through the network. 

Given those expectations, in 2017 Western Power developed a model to assess customers’ incentive to 

adopt solar PV and battery storage systems for its forecasts at the time. The model considered factors 

affecting the adoption of battery systems including the present value of the cost of a battery system in 

compare to network delivered electricity in several scenarios.8 

Results showed that that the average customer did not have the incentive to install batteries, but that 

many customers had the incentive to partially load defect in the next five to 10 years. For its medium-term 

forecasts in 2017, Western Power assumed substantial battery uptake using the results of the adoption 

model. 

Western Power has been actively monitoring developments in battery costs and installations and 

conducted further assessments and revisited its forecasts based on observed trends in battery uptakes 

since 2017. Western Power has estimated that the effect of residential battery installations on peak 

demand during the forecast horizon is small.  

Western Power also drew on forecasts produced by CSIRO and AEMO. AEMO’s estimates of battery storage 

uptake and relevant effect on peak demand were consistent with those assessed by Western Power. AEMO 

estimated that batteries’ influence on peak demand in the SWIS will be approximately 9 MW in 2024/25.9 

Western Power estimates show that residential customers’ individual contribution to peak demand is 

approximately 800 watts.  In 2019, CSIRO developed forecasts of behind-the-meter battery storage systems 

for residential and commercial sectors in Western Australia.10 CSIRO forecasted approximately 5,000 

residential battery installations by 2025. These installations are likely to reduce peak demand in the SWIS 

by four megawatts.  

 

Given the expected small effect of battery storage systems during the forecast horizon, Western Power’s 

medium-term forecasts in 2020 did not make any adjustment for the effect of battery storage systems.  

 

The 2019 forecasts did not include any adjustment for the uptake of electric vehicles. In its central scenario, 

CSIRO forecasted that electric vehicles reach parity with the upfront cost of internal combustion vehicles in 

2030.11 Before then, the effect of electric vehicles on energy consumption and demand was small.12  

 

8  For details of the model results refer to Connections, Energy and Demand Forecast Methodology, Access Arrangement 
Supplementary, 2 October 2017 (available online). 

9  AEMO, 2019. 2019 Electricity Statement of Opportunities, A report for the Wholesale Electricity Market, p.32 (available 

online). 

10  CSIRO, 2019. Projections for small scale embedded energy technologies, Report to AEMO (available online). 

11  Ibid, p. 52. 

12  Based on CSIRO’s forecasts, AEMO estimated that by 2024/25 electric vehicles will increase peak demand in the SWIS 

between 1.1 MW and 17.2 MW (and network energy consumption between 8.7 GWh and 122.0 GWh). Refer to AEMO,2019. 

2019 Electricity Statement of Opportunities, A report for the Wholesale Electricity Market, p. 34 (available online). 

https://www.erawa.com.au/cproot/18941/2/WPAA4%20-%20ProposedAAattachment7.3.1%20-%20Connections%20Energy%20and%20Demand%20Forecast%20Methodology.pdf
https://www.aemo.com.au/-/media/Files/Electricity/WEM/Planning_and_Forecasting/ESOO/2019/2019-WEM-ESOO-report.pdf
https://www.aemo.com.au/-/media/Files/Electricity/NEM/Planning_and_Forecasting/Inputs-Assumptions-Methodologies/2019/2019-Projections-for-Small-Scale-Embedded-Technologies-Report-by-CSIRO.pdf
https://www.aemo.com.au/-/media/Files/Electricity/WEM/Planning_and_Forecasting/ESOO/2019/2019-WEM-ESOO-report.pdf
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4. Customer connections, solar PV and energy forecast 
methods 

The method that produces the forecast of energy exports from the network is based on three separate 

trends: number of customer connections, adoption of solar PVs and energy imports from solar PVs. This 

allows the model to reliably incorporate the effect of socio-economic and technological forces that result in 

highly dynamic and evolving energy consumption patterns. These forecasts are further used for forecasting 

maximum and minimum demand. 

4.1 Number of connections forecast 

The forecast includes gross regional product, gross regional demand and regional population in the set of 

predictors to create a monthly forecast of the number of connections.  Number of connections comprises 

counts of National Metering Identifier (NMI) and connection counts for streetlights and unmetered supplies.  

4.1.1 Number of connections forecast by network hierarchy 

The forecast of connections by network hierarchy is defined in order by customer type and supply area, as 

depicted in section 1, Figure 1.1 . The forecast also reconciles forecasts generated for each hierarchy level 

to ensure they suitably add up to higher or lower levels. Without reconciliation forecasts at the top level of 

hierarchy would not equal the sum of the forecasts at the middle level or at the bottom level. By 

reconciling the differences, the model uses the information contained in the hierarchical structure that 

might improve the forecasts. 

From a range of candidate time series model, SAS produces connection forecasts primarily using the 

following time series statistics methods: 

Auto-Regressive Integrated Moving Average (ARIMA) method with external regressors as well as 

Vector Auto-Regressive (VAR) methods 

Unobserved Components Models 

For each time series in the hierarchy, SAS performs diagnoses of the time series using time series analysis 

techniques. It then creates a list of candidate model specifications based on the diagnostics. The analyst 

then selects the most appropriate model specification and set of predictors based on either in-sample or 

holdout sample evaluation using a model selection criterion.  

SAS reconciles the model forecasts to form consistent reconciled forecasts across the defined hierarchy. 

The reconciliation method also evaluates the forecast using in-sample analysis and provides for out-of-

sample analysis of forecast performance.  
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Design of customer connections forecast 

The forecast of number of connections is set up based on regional population and economic 

predictors in SAS.  

The forecast is set up based on current geographical coverage of substations at the time of 

generating forecast. This ensures that changes to electrical configuration of the network will not 

distort the forecast of customer counts. The model applies historical changes to network 

configuration after forecasting connection counts, which will be incorporated in minimum and 

maximum demand forecasts. 

This is presented using Arkana substation forecast in Figure 4.1. The historical connection count 

included in the sample shows the monthly number of connections covered by the Arkana 

substation. In late 2013, Western Power transferred some of the connections in Arkana substation 

to the newly commissioned Balcatta substation. The connection count forecast for the Arkana 

substation, however, uses the most recent coverage configuration of the substation to ensure that 

the economic and population predictors can suitably explain changes to connection counts. The 

forecasts generated by this design also represent the forecast of connection counts if the current 

network configuration remains unchanged throughout the forecast horizon. 

Historical changes to the configuration of network are reflected in minimum and maximum demand 

forecasts. This historical adjustment is important because minimum and maximum forecasts should 

incorporate these changes in the fitting of extreme demand models.  For the Arkana substation this 

adjustment is presented in Figure 4.1. The Extreme Value Theory (EVT) model uses the trend in 

connection counts incorporating historical electrical reconfigurations. 

Figure 4.1. Arkana substation number of connections forecast 

  

In Figure 4.1, the black line shows history and forecast connection counts and the red line shows a 

piecewise smoothing model fitted to capture trend in connection counts. 
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4.1.2 Customer connections forecast by tariff 

A separate forecast of connections per tariff is produced to minimise the amount of work required to 

create the revenue forecasts, these numbers are reconciled to the system total to guarantee consistency 

between the outputs. 

An Unobserved Components Model is used to create a forecast of the underlying growth in each tariff and 

customer type combination. The combination is important because some tariffs, such as AER/RT1, cannot 

neatly be defined as either residential or small business due to the presence of home businesses, schools, 

and charities which are allowed onto the tariff. These non-residential connections have their own distinct 

trends which are important to forecast independently. Unidirectional and bidirectional tariffs are merged at 

this stage because the underlying growth of connections in each tariff appears to be independent of the 

decision to install solar photovoltaic systems. 

A second model of movement between tariffs is then used to forecast overall changes in connection 

numbers by tariff. Movement between tariffs is the result of two independent drivers – installation of solar 

photovoltaic systems and cost minimisation by electricity retailers. Historic uptake of solar photovoltaic 

systems has been closely linked to changes in retail tariff prices, such as Feed In Tariff (2011), Renewable 

Energy Buyback Scheme (2012), above inflation increases in network tariff prices (2017), and potentially 

Distributed Energy Buyback Scheme (2020). Moving a connection to a different network tariff is a cost 

minimisation strategy by retailers because they are under no obligation to pass on pricing signals from 

network tariffs to customers. Historic movements have often reflected either price gaps or long-term 

changes to customer behaviour that create an incentive. Movement has been high in recent years due to 

the introduction of several new tariffs in July 2019, and the changes to prices of these new tariffs in July 

2020. The model of these movements is a linear regression based on network and retail tariff prices, which 

account for the relative arbitrage opportunity.  

The forecast of Streetlight connections is performed as a linear regression against overall connections on 

the network because the number of streetlights is closely correlated with new developments. The forecast 

of Unmetered Supply is performed using an ARIMA model because the growth in this segment appears to 

be uncorrelated with any forecastable explanatory data.  

 

4.2 Forecasting solar PV capacity 

Producing reliable long-term forecasts for the number of solar PV installations is important to developing 

accurate forecasts for electricity consumption and demand. Although the mass adoption of solar PV 

installations is a relatively recent phenomenon, the rate of adoption has had a material demand-reducing 

impact. Given its importance, Western Power conducted several investigations into forecasting methods 

for solar PV capacity and counts.   

Solar PV Capacity (kVA) is the sum of photovoltaic (PV) inverter capacities for solar panels that are installed 

on customer’s premises and connected downstream from the substation. The PV capacity has been 

demonstrated as a key driver that influences energy consumption and peak demand.   This year, the 

primary focus was the development of a data-driven approach to forecasting PV capacity for each 

substation as explained in more detail below. 



 

 

Page 17 

4.2.1 PV capacity forecast 

Monthly PV capacity forecast was developed for four system-tariff sectors (Residential, Small Business, 

Medium Business, and Large Business) per substation.  To proceed, for a given tariff sector of a substation, 

a linear regression model was first fitted to the increment of PV capacity and driving factors including 

customer connections, tariff and service changes from the observed data from January 2008 to June 2020.  

Then forecast of PV capacity after June 2020 is obtained by the sum of the previous month PV capacity and 

the forecasted monthly increment of PV capacity estimated by the regression model. 

Regression model applied to the increment of PV capacity ∆𝑅𝑒𝑠_𝑃𝑉𝐶𝑖,𝑡+1 = : 𝑅𝑒𝑠_𝑃𝑉𝐶𝑖,𝑡+1 − 𝑅𝑒𝑠𝑃𝑉𝐶𝑖,𝑡
 of 

residential sector from month 𝑡 to month  𝑡 + 1 : 

∆𝑅𝑒𝑠_𝑃𝑉𝐶𝑖,𝑡+1 = 𝛽0 + 𝛽1𝑅𝑒𝑠_𝑁𝑀𝐼𝑖,𝑡+1 + 𝛽2𝑇𝑎𝑟𝑖𝑓𝑓𝐴1𝑡+1 + 𝛽3𝑇𝑎𝑟𝑖𝑓𝑓𝐴1_𝑆𝐶𝑡+1 + 𝜖𝑖,𝑡+1 

The forecast of 𝑅𝑒𝑠_𝑃𝑉𝐶𝑖,𝑡+1 can be obtained by 

𝑅𝑒𝑠_𝑃𝑉𝐶𝑖,𝑡+1 = 𝑅𝑒𝑠_𝑃𝑉𝐶𝑖,𝑡 + 𝛽̂0+𝛽̂1𝑅𝑒𝑠_𝑁𝑀𝐼𝑖,𝑡+1 + 𝛽̂2𝑇𝑎𝑟𝑖𝑓𝑓𝐴1𝑡+1 + 𝛽̂3𝑇𝑎𝑟𝑖𝑓𝑓𝐴1_𝑆𝐶𝑡+1 

Regression model applied to the increment of PV capacity of (Small, Medium and Large) business: 

 

∆𝐵𝑢𝑠_𝑃𝑉𝐶𝑖,𝑡+1 = 𝛾0 + 𝛾0𝐵𝑢𝑠_𝑁𝑀𝐼𝑖,𝑡+1 + 𝛽1𝑇𝑎𝑟𝑖𝑓𝑓𝐿1𝑡+1 + 𝛽2𝑇𝑎𝑟𝑖𝑓𝑓𝐿1_𝑆𝐶𝑡+1 +  𝜖𝑖,𝑡+1 

 

The forecast of 𝐵𝑢𝑠_𝑃𝑉𝐶𝑖,𝑡+1 can be obtained by 

𝐵𝑢𝑠_𝑃𝑉𝐶𝑖,𝑡+1 = 𝐵𝑢𝑠_𝑃𝑉𝐶𝑖,𝑡 + ∆𝐵𝑢𝑠_𝑃𝑉𝐶𝑖,𝑡+1 

Variables and their descriptions are detailed in Table 2.  
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Table 2. Historical and forecast input data source for PV capacity modelling 

Variable Description Unit 

𝑅𝑒𝑠_𝑃𝑉𝐶𝑖,𝑡+1 Monthly residential PV capacity for substation 𝑖 in month 𝑡 + 1  KVA 

∆𝑅𝑒𝑠_𝑃𝑉𝐶𝑖,𝑡 Monthly increment of residential PV capacity for substation 𝑖 in month 𝑡  KVA 

𝐵𝑢𝑠_𝑃𝑉𝐶𝑖,𝑡+1 Monthly business PV capacity for substation 𝑖 in month 𝑡 + 1 month  KVA 

∆𝐵𝑢𝑠_𝑃𝑉𝐶𝑖,𝑡  Monthly increment of PV capacity for substation 𝑖 in month 𝑡 KVA 

𝑅𝑒𝑠_𝑁𝑀𝐼𝑖,𝑡 Monthly residential connections (including both historical and forecasted 

values) for substation 𝑖 in 𝑡 month from January 2008 to June 2025 

Count 

𝐵𝑢𝑠_𝑁𝑀𝐼𝑖,𝑡  Monthly (Small, Medium and Lager) business connections (including both 

historical and forecasted values) for substation 𝑖 in 𝑡 month from January 2008 

to June 2025 

Count 

𝑇𝑎𝑟𝑖𝑓𝑓𝐴1𝑡 Residential tariff in 𝑡 month from January 2008 to June 2025, source from 

Energy Operators (Electricity Generation and Retail Corporation) (Charges) By-

laws 200613 

cent/kWh 

𝑇𝑎𝑟𝑖𝑓𝑓𝐴1_𝑆𝐶𝑡  Residential service charge in 𝑡 month from January 2008 to June 2025, source 

from Energy Operators (Electricity Generation and Retail Corporation) (Charges) 

By-laws 2006 

cent/day 

𝑇𝑎𝑟𝑖𝑓𝑓𝐿1𝑡  Business tariff in 𝑡 month from January 2008 to June 2025, source from Energy 

Operators (Electricity Generation and Retail Corporation) (Charges) By-laws 

2006 

cent/kWh 

𝑇𝑎𝑟𝑖𝑓𝑓𝐴1_𝑆𝐶𝑡  Business service charge in 𝑡 month from January 2008 to June 2025, source 

from Energy Operators (Electricity Generation and Retail Corporation) (Charges) 

By-laws 2006 

cent/day 

 

4.3 Energy forecasts 

Energy forecast model is developed in SAS and produces separate forecasts for exported energy from the 

grid and imported energy from solar photovoltaic panels. 

The model produces monthly forecasts at different hierarchy levels comprising tariff type, customer 

segment, and substation levels. It also reconciles forecasts at different hierarchy levels, as explained in 

section 4.1.1  

Energy exported to different customer segments is driven by different factors and the model suitably 

accounts for such differences by splitting the customers to different segments and/or producing forecasts 

for each segment separately. For instance, the model develops separate forecasts for large business users. 

 

13  Energy Operators (Electricity Generation and Retail Corporation) (Charges) By-laws 2006, (available online).  

https://www.legislation.wa.gov.au/legislation/statutes.nsf/main_mrtitle_1378_currencies.html
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The forecast of large business users is further adjusted by information available to Western Power at the 

time of producing forecast. This is explained in more details in section 6. 

4.3.1 Import energy forecast  

The model of import energy from medium business, small business, and residential connects assumes that 

the source of generation is solar photovoltaics. It uses a linear regression model to predict the ratio of 

energy imported per MVA of installation, which is the multiplied by the forecast capacity to estimate future 

solar imports. It is a purely autoregressive model because this ratio has been quite stable over time. 

A separate model also estimates large business customers’ energy import from their embedded generators 

by an autoregressive model of historical import energy. These customers cannot be assumed to have solar 

photovoltaic systems and are generally observed to have stable consumption patterns. 

4.3.2 Export energy forecasts  

This model produces separate forecasts of energy exports for all customer segments and all tariffs on an 

average per connection basis. It develops several unobserved component models and seasonal 

decomposition models using different combinations of hyperparameters and explanatory variables 

comprising solar photovoltaic capacity and customer connections. The model provides diagnostics for 

model selection and results are inspected by the user to select desirable models. 

Customer segment is a relatively coarse grouping, so forecasts produced at this level may not provide a 

robust estimate of future energy exports for each tariff. To remedy this problem, the model adjusts the 

tariff level export energy forecasts to ensure they are consistent with the more robust forecasts produced 

at customer segment level. The model adjusts tariff level forecasts by the ratio of energy exports from 

customer segment level forecast to energy exports from tariff level forecasts.  

4.3.3 Energy export forecast for streetlights and unmetered supplies 

The forecast of Streetlight connections is performed as a linear regression against overall connections on 

the network because the number of streetlights is closely correlated with new developments. The forecast 

of Unmetered Supply is performed using an ARIMA model because the growth in this segment appears to 

be uncorrelated with any forecastable explanatory data  
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5. Maximum and minimum demand forecasts 

Western Power improved its method for forecasting maximum demand. The revised method provides for 

the internal consistency between the forecast of maximum demand and those for the number of 

connections, energy exports to customers and solar PV capacity installed.  

To improve its forecasts, Western Power has developed a novel method for forecasting substation 

maximum and minimum demands using the extreme value theory. The new method has been peer-

reviewed and published in the international journal IEEE Transactions on Power Systems.14 

The new forecast method has two innovative features:  

it ensures an internal consistency between demand, customer count, energy consumption and solar PV 

forecasts. Maximum demand is modelled as a function of trends in three common factors already 

required by utilities, including customer count, energy consumption, and installed photovoltaic 

capacity. 

it is robust to changes to network configurations – e.g., substation transfers. 

The new forecast method also provides forecasts of minimum demand. The increased penetration of 

behind-the-meter solar PV systems has created challenges for the operation of the network when 

customers’ demand is met by energy imported from solar panels during daytime and when demand for 

network delivered electricity is low during mild weather conditions.  It is important that network 

development and operation plans suitably consider changes in minimum demand.   

5.1 Introduction 

The forecast method produces substation maximum and minimum demand forecasts using extreme value 

theory.   

Extreme value theory 

• Extreme value theory is a branch of statistics dealing with the extreme deviations from 

the median of probability distributions.  It seeks to assess, from a given ordered sample of a given 

random variable, the probability of events that are more extreme than any previously observed 

• Extreme value analysis is widely used in many disciplines, such as structural engineering, 

finance, earth sciences, traffic prediction, and geological engineering.  However, appropriate 

statistical tools based on extreme value theory have rarely been used to analyse annual maximum 

electricity demand 

• Western Power has developed a novel method for forecasting substation maximum and minimum 

demands using the extreme value theory 

Due to variability, forecast maximum demand is expressed at three probability levels of 10, 50 and 90 per 
cent probability of exceedance (PoE), rather than a point forecast.  For any given season or year, PoE10, 

PoE50 and PoE90 are defined as below: 

 
14 Y. Li and B. Jones, "The Use of Extreme Value Theory for Forecasting Long-Term Substation Maximum Electricity 
Demand," in IEEE Transactions on Power Systems, vol. 35, no. 1, pp. 128-139, Jan. 2020, doi: 
10.1109/TPWRS.2019.2930113. 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Deviation_(statistics)
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Sample_(statistics)
https://en.wikipedia.org/wiki/Structural_engineering
https://en.wikipedia.org/wiki/Earth_science
https://en.wikipedia.org/wiki/Engineering_geology
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• PoE10 or 10 per cent PoE maximum demand value is expected to be exceeded, on average, one 

year in 10. 

• PoE50 or 50 per cent PoE maximum demand value is expected to be exceeded, on average, one 

year in two. 

• PoE90 or 90 per cent PoE maximum demand value is expected to be exceeded, on average, nine 

year in 10. 

Despite the extreme nature of annual maximum demand, the statistical theory of extreme values has only 

rarely been applied.  Network operators typically complete energy consumption and maximum demand 

forecasts separately through two different processes, leading to inconsistent results. The recent uptake of 

solar PV systems and changes to energy services have driven changes to system demand. In many 

instances, Western Power’s previous approach to demand forecasts could no longer produce reliable 

forecasts. 

The previous demand forecast method applied a load factor to monthly average demand for calculating 

maximum demand forecasts.15 For instance, for the Arkana substation the previous forecast 

underestimated demand despite a larger forecast prediction interval, when compared to the new method. 

None of the observed peak demands between 2015 and 2018 fell in the forecast prediction interval. The 

forecast produced using the EVT, however, could cover two out of four observed annual peak demands 

within a relatively narrow prediction interval. 

 

 
Figure 5. A comparison of forecasts produced using the EVT and the previous load factor adjustment 

methods.16 

 

15  For further details about the application of load factor in the calculation of maximum demand refer to Connections, Energy 
and Demand Forecast Methodology, Access Arrangement Supplementary, pp.22–27 

(https://www.erawa.com.au/cproot/18941/2/WPAA4%20-%20ProposedAAattachment7.3.1%20-

%20Connections%20Energy%20and%20Demand%20Forecast%20Methodology.pdf)  

16  Models are calibrated with data in the training period from 2008 to 2014, the end of training data marked as the vertical dash 

line.  The PoE10, PoE50 and PoE90 estimated from the point process models are marked as red, orange, and blue solid lines 

and those based on the load factor forecast approach are masked as dashed lines, respectively. 

https://www.erawa.com.au/cproot/18941/2/WPAA4%20-%20ProposedAAattachment7.3.1%20-%20Connections%20Energy%20and%20Demand%20Forecast%20Methodology.pdf
https://www.erawa.com.au/cproot/18941/2/WPAA4%20-%20ProposedAAattachment7.3.1%20-%20Connections%20Energy%20and%20Demand%20Forecast%20Methodology.pdf
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The new peak demand forecast model uses a point process model from the extreme value theory. It 

forecasts substation maximum (or minimum) demand as a function of customer count, average demand, 

and installed photovoltaic capacity trends.  

Point process model  

• Point process model from extreme value theory combines modelling the occurrence of the 

extreme demand over a high threshold and the intensity of extreme demand as a two-dimensional 

Poisson point process in the sense that  

o The occurrence of extreme demand is assumed to have a Poisson distribution. 

o The intensity parameter of extreme demand is driven by a generalized extreme value 

distribution  

• The parameters of point process model can be parameterised as generalised extreme value 

distributions which are driven by energy consumption, customer connection and solar capacity 

trends. 

 

As the generalized extreme value distribution governs the behaviours of block maxima (annual maximum 

demand), maximum demand can be estimated for different quantiles, or i.e. PoE10, PoE50 and PoE90, as 

required by planning standards.  

5.2 Data preparation 

5.2.1 Energy consumption, customer count and solar PV capacity data 

Electricity demand on Western Power’s network is measured and aggregated to five-minute averages for 

the purposes of forecasting.  Data preparation process for both maximum and minimum demand further 

calculates daily maximum and minimum data based on the five-minute demand data. 

The point process model uses forecasts of customer connections, energy, and solar PV capacity forecasts 

explained in section 4 to explain the variation in the peak demand.  Customer connections is the number of 

unique customers connected to the existing network (i.e. counts of National Metering Identifier (NMI) and 

connection counts for streetlights and unmetered supplies).  Over time, this series will change as new 

customers connect the existing network or as network configuration changes, switching customers from 

one substation to another.  For the forecasts developed in 2020, monthly customer connection series from 

January 2008 to June 2025 is available: part history from January 2008 to June 2020 and part forecast from 

July 2020 to June 2025.  The customer count series is then made daily and minor inconsistencies smoothed 

by fitting a piecewise smooth trend17 in order to capture changes in customer connections.  Seasonality is 

less critical in customer connection, and the trend is used simply to smooth minor variation (e.g. Figure 

5.1a).  

Energy consumption forecasts, both exports (energy to customers) and imports (energy to the network) 

including energy generated from solar PVs), are prepared by network tariff and monthly average demand 

series are constructed using the following equation: 

 
17 Y. Li and B. Jones, "The Use of Extreme Value Theory for Forecasting Long-Term Substation Maximum Electricity 
Demand," in IEEE Transactions on Power Systems, vol. 35, no. 1, pp. 128-139, Jan. 2020, doi: 
10.1109/TPWRS.2019.2930113. 
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𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑚𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 𝑠𝑢𝑚 𝑜𝑓 𝑒𝑥𝑝𝑜𝑟𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 − 𝑠𝑢𝑚 𝑜𝑓 𝑖𝑚𝑝𝑜𝑟𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 

For the forecasts developed in 2020, the monthly energy consumption (kWh) series from January 2008 to 

June 2025 is available: part history from January 2008 to June 2020 and part forecast from July 2020 to 

June 2025 ( based on forecasts explained in section 4.3).  The available monthly series is then allocated 

evenly to each day within a month.  The trend in average demand at the substation is then obtained by 

fitting a piecewise smooth trend such that all seasonality and weather impacts are removed.  The piecewise 

smooth trend was used to catch up step changes when there are network transfers at the substation (e.g. 

Figure 5.1b). 

 

Figure 5.1 Time series of observed (black) and fitted trends (red) for customer count, panel (a), energy 

consumption, panel (b), and solar PV capacity, panel (c), for Arkana substation.18  

 

PV Capacity (kVA) is the sum of photovoltaic (PV) inverter capacities for solar panels that are installed on 

customer’s premises and connected downstream from the substation. Over time, this series will increase as 

new solar panels are installed but may vary due to network transfers that switch customers and therefore 

PVs from one substation to another.  For the forecasts developed in 2020, a monthly data series January 

2008 to June 2025 is available: part history from January 2008 to June 2020 and part forecast from July 

2020 to June 2025. The PV capacity series is then made daily and minor inconsistencies smoothed by fitting 

 
18  The vertical dashed line is the end of period for observed data on 30 June 2020. 
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a piecewise smooth trend. Like the customer count, the seasonality is less critical and, therefore, used 

simply to smooth minor variation (e.g. Figure 5.1c).   

5.2.2 Outlier detection and removal 

Outlier detection procedures are used to remove outliers in daily load caused by any measurement errors 

or outages.19  The detection process for a given substation is based on a four-step process: 

1. Calculate sample standard deviation of daily maximum (or minimum) load for each summer or 

winter 

2. Calculate the distance between two consecutive observed daily maximum (or minimum) loads 

3. Check the distance between two consecutive observed daily maximum loads to ensure the 

distance is not greater than three times the sample standard deviation for the summer or winter.  

Otherwise, the data is shortlisted for a further test in step 4. For the minimum demand time 

series, a similar test is applied based on a different distance threshold. If the distance between 

two consecutive daytime20 or night-time minimum demand data points exceeds the standard 

deviation of the sample, shortlist the data for the test in step 4. 

4. The resulting list of potential outliers are further assessed based on other data to determine the 

cause of the deviation.  For example, if the deviation is caused by faults, major event days and 

outages, they are removed from the analysis.  The data validated to be outliers is removed and 

does not affect the extreme demand modelling process. 

Figure 5.2 shows a comparison of time series of day-time daily minimum demand before (upper panel) and 

after (bottom panel) the data cleaning process for Arkana.  The day-time daily minimum demand is more 

realistic by removing the outliers.  Similarly, as shown in Figure 5.3, by applying the above data cleaning 

process to substation Mandurah (MH), the time series of daily day-time minimum demand is obtained by 

removing outliers (e.g., blue dot in 2008). 

 
19  Outliers are observations in a data set that are substantially different from the bulk of the data.  An outlier may 
be due to variability in the measurement or it may indicate experimental error; the latter may be excluded from the 
data set. 

 

20  The difference in standard deviation threshold is empirical, i.e. based on the differences in observed volatility and skewness in 

the minima and maxima data. 
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Figure 5.2 Data cleaning process for Arkana substation day-time minimum demand.  The blue dots 

denote financial year minimum demand based on raw (top panel) and cleaned (bottom 

panel) data. 
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Figure 5.3 Data cleaning process for Mandurah (MH) substation day-time minimum demand. The blue 

dots denote financial year minimum demand based on raw (top panel) and cleaned (bottom 

panel) data. 
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5.3 Statistics of Extremes for peak demand forecast 

The appropriate statistical tools for analysing extremes are well developed in statistics literature21.  The 

popular approach is using the generalized extreme value (GEV) distribution to model block maxima (i.e., 

annual or seasonal maxima, or equivalent minima). 

Generalized extreme value 

Let 𝑋1, … , 𝑋𝑛 be an independent and identically distributed sequence of 𝑛 random variables from a 

distribution 𝐹, and the block maximum 𝑀𝑛 = 𝑚𝑎𝑥{𝑋1, … , 𝑋𝑛}.  Suppose there exists constants, 𝑎𝑛 > 0 and 

𝑏𝑛, such that, 

 Pr {
𝑀𝑛−𝑎𝑛

𝑏𝑛
≤ 𝑥} = 𝐹(𝑎𝑛 + 𝑏𝑛𝑥)𝑛 → 𝐺(𝑥)  as  𝑛 → ∞  

Then, the distribution of 𝐺 is a generalised extreme value (GEV); that is, 

 ( )
1

; , , exp 1
x

G x




   


− −  
= − +     

   

where 1 + ξ
𝑥−𝜇

𝜎
> 0. The parameters 𝜇, 𝜎 > 0 and 𝜉 denote the location, scale, and shape parameters, 

respectively.  

However, directly modelling the block (annual) maxima with the GEV distribution can be problematic when 

the data are only available for a few years.  This is the case of the electricity peak demand forecast at 

Western Power, where there are only 12 years (2008-2020) historical data available.   

5.3.1 Point process model 

The point process model has several advantages over the block maxima directly modelled by a GEV 

distribution: 

Point process model uses more data (i.e., all data over a high threshold, as explained in detail below) 

resulting in more reliable results than those based on a direct fit of the GEV distribution to annual 

extreme demands. 

The point process model can be formulated as function of trends in customer count, average demand 

and solar PV installed capacity. 

A point process models the occurrence of maximum (or minimum) demand as random events distributed 

with a two-dimensional Poisson (point) process. This process provides a stochastic rule for the occurrence 

and position of point events – in this context occurrence and magnitude of extremely large demand 

exceeding a high threshold. From the model, the probability of a certain number of events over a selected 

threshold within a specified period could be calculated.  A two-dimensional process is used to describe the 

position, or the magnitude, of extreme demand events.   

This two-dimensional point process is illustrated in the below figure. The process is illustrated over a time 

interval of duration 𝑇 and all observations above threshold 𝑢 are recorded. These points are annotated on 

 
21 S. Coles, An Introduction to Statistical Modelling of Extreme Values. London, U.K.: Springer, 2001. 
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a two-dimensional scatter plot. For a set 𝐴 shown in Figure 5.4, the count of observations in the set 𝐴 is 

assumed to be Poisson with an intensity parameter driven by an extreme value distribution: 

Λ(𝐴) = (𝑡2 − 𝑡1) (1 + 𝜉
𝑦 − 𝜇

𝜎
)

−1/𝜉

 

where 𝜇 is a location parameter, 𝜎 is a scale parameter and 𝜉 is a shape parameter for a GEV distribution. 

 

Figure 5.4. Diagram showing a two-dimensional point process for exceedances over a threshold 𝒖22 

 

The intensity of the Poisson process is determined by three parameters (𝜇, 𝜎, 𝜉), which can be 

demonstrated that they are equal to the location, scale and shape parameters of a GEV distribution.  

In the developed model location and scale parameters are assumed to be dependent on customer 

connection counts, energy consumption and solar PV capacity trends, and the shape parameter 𝜉 remains 

same. Table 3 lists 12 candidate point process models (A to L) used to fit to the substation data.  Model A is 

a stationary model with no influence from other covariates.  Models B to L are nonstationary models.  Each 

nonstationary model consists of a GEV distribution with the location parameter assumed to be linearly 

influenced by trends in the customer count, 𝑍1𝑡  , energy consumption, 𝑍2𝑡 , and PV capacity, 𝑍3𝑡 . The scale 

parameter is affected by the PV capacity trend as an exponential form in models H to L to ensure the scale 

parameter is greater than zero.   

 

22 Smith R., 2013. Statistics of extremes, with applications in environment, insurance and finance, 

Department of Statistics, University of North Carolina Chapel Hill, NC 27599-3260, USA. 
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Table 3. Candidate point process models used to fit the substation data.  

Model Notation Location Scale Shape Covariate 

A mu0 μ(t)= 𝜇   σ(t)=σ ξ(𝑡) = ξ Stationary 

B mu1 μ(t)= μ0+μ1Z1t σ(t)=σ ξ(𝑡) = ξ Z1t 

C mu2 μ(t)= μ0+μ1Z2t σ(t)=σ ξ(𝑡) = ξ Z2t 

D mu12 μ(t)= μ0+μ1Z1t+μ2Z2t σ(t)=σ ξ(𝑡) = ξ Z1t & Z2t 

E mu13 μ(t)= μ0+μ1Z1t+μ3Z3t σ(t)=σ ξ(𝑡) = ξ Z1t & Z3t 

F mu23 μ(t)= μ0+μ2Z2t+μ3Z3t σ(t)=σ ξ(𝑡) = ξ Z2t & Z3t 

G mu123 μ(t)= μ0+μ1Z1t+μ2Z2t+μ3Z3t σ(t)=σ ξ(𝑡) = ξ Z1t , Z2t & Z3t 

H mu2_sig3 μ(t)= μ0+μ2Z2t σ(t)=exp(σ0 + σ1𝑍3𝑡)  ξ(𝑡) = ξ Z2t & Z3t 

I mu12_sig3 μ(t)= μ0+μ1Z1t+μ2Z2t σ(t)=exp(σ0 + σ1𝑍3𝑡)  ξ(𝑡) = ξ Z1t , Z2t & Z3t 

J mu13_sig3 μ(t)= μ0+μ1Z1t+μ3Z3t σ(t)=exp(σ0 + σ1𝑍3𝑡)  ξ(𝑡) = ξ Z1t & Z3t 

K mu23_sig3 μ(t)= μ0+μ2Z2t+μ3Z3t σ(t)=exp(σ0 + σ1𝑍3𝑡)  ξ(𝑡) = ξ Z2t & Z3t 

L mu123_sig3 μ(t)= μ0+μ1Z1t+μ2Z2t+μ3Z3t σ(t)=exp(σ0 + σ1𝑍3𝑡)  ξ(𝑡) = ξ Z1t , Z2t & Z3t 

5.3.2 Model selection 

The maximum likelihood estimation technique23 is used to estimate GEV parameters in the point process 

models. Having all models in Table 3 fitted to data, the model selection is conducted based on the following 

processes:  

i. selecting a nonstationary point process model with the minimum Akaike’s information 

criteria (AIC) value from all candidate nonstationary models; and  

ii. conducting the likelihood test to assess the significant difference between the selected 

nonstationary model against the stationary model A. 

iii. checking if the selected model is a valid one.  If not, select the model with immediate 

smaller AIC and conduct the likelihood test to assess the significant difference between 

the selected nonstationary model against the stationary model A.  

 

 

23  S. Coles, An introduction to statistical modelling of extreme values. London, UK; Springer, 2001. 
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Valid point process model for maximum demand 

• A valid model must have a positive and statistically significant coefficient for the customer 

connection and energy consumption, and a negative and statistically significant coefficient for PV 

capacity when they are fitted into the location parameters of the GEV distribution. This is because 

the more customer connection, the higher maximum demand;  the maximum demand and energy 

consumption are moving together (a significant positive correlation between them which can be 

demonstrated by system total and substation data), and the PV generation has negative offset 

influence on the maximum demand.   

 

• A valid model must have a positive and statistically significant coefficient for the PV capacity if it is 
chosen to fit into the scale parameter of the GEV distribution because it is expected the PV 

influence on the scale parameter causes the deviation increase of peak demand.  

 

5.3.3 Forecast probability of exceedance 

Forecasts of annual maximum demand in terms of a given probability of exceedance 𝑝 follow the (1 − 𝑝)th 

time varying quantiles of the non-stationary point process model (or ‘effective’ return level), which would 

reduce to a conventional return level (with return period 1 𝑝)⁄ .  The (1 − 𝑝)th time varying quantiles can 

be given by: 

 ( ) ( ) ( )
, ( ) ln 1 1

( )

t
PoE p t t p

t






−

= + − − −      

Hence, forecasts of PoE10(𝑡), PoE50(𝑡) and PoE90(𝑡) at time 𝑡 are given by the above equation with 

𝑝 =0.10, 0.50 and 0.90, respectively. 

Western Power produces system maximum demand, coincident and noncoincident maximum demands as 

well as day-time minimum demand at all substations and selected feeders by the PoE10(𝑡), PoE50(𝑡) and 

PoE90(𝑡) at time 𝑡 up to 30 June 2025 based on the selected point process model. 

5.3.4 Minimum demand forecast 

Because the block minimum 𝑀̃𝑛=min {𝑋1, 𝑋2,…, 𝑋𝑛} = −max {−𝑋1, −𝑋2,…, −𝑋𝑛}, it follows that GEV 

distribution can be also used to model the behaviour of the block minimum 𝑀̃𝑛 (e.g. annual day-time 

minimum).  That is, when the sequence 𝑋1, … , 𝑋𝑛  are recorded as the sequence of daily minimum load, the 

methods for maximum demand forecasts can be applied to the negative sequence of random variables 

−𝑋1, −𝑋2,…, −𝑋𝑛 in order to get a point process model from EVT to forecast the annual minimum demand. 

5.3.5 Quantile regression 

A similar model specification for maximum and minimum demand forecasts could be achieved with the use 

of quantile regression, with quantiles of a distribution being directly modelled as functions of covariates.  

Unlike linear regression model which specifies the change in the conditional mean of the dependent 

variable associated with a change in the covariates, the quantile regression model (QRM) specifies changes 
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in the conditional quantile of the dependent variable associated with a change in the covariates.  Quantile 

regression has recently been used for short-term load forecasts24 . 

This year, Western Power also developed quantile regression modelling (QRM) approach to medium term 

load forecast on the basis that QR is easy to implement and computationally fast, compared to the point 

process models from EVT.  

A general linear QRM can be expressed as: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 1| q q q q q q

x t t k kt t t tQ q Z Z Z    = + + + + = +Z β   (1) 

where 𝑄𝑥(𝑞|. ) is the conditional 𝑞-th quantile of the daily electric load distribution (𝑋𝑡), 

1[1, , , ]t t ktZ Z=Z  are regressors (covariates) , 𝑘 is he number of covariates and 

 ( ) ( ) ( ) ( )

0 1, , ,q q q q

k  =β is a vector of  parameters for quantile 𝑞.  The parameters are estimated by 

minimizing the loss function for a particular 𝑞-th quantile: 
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 = 

 
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 

β

Z β Z β   (2) 

where 
tx is the actual load of 𝑋𝑡, 𝑡 = 1, 2, … denote the time day in the study period. 

Forecasts of annual maximum (or minimum) demand in terms of a given probability of exceedance 𝑝, the 

𝑞 = (1 − 𝑝)th time varying quantiles of the valid quantile regression model can be given by  

 
( ) ( ) ( )

0 1 1
ˆ ˆ ˆ( , ) q q q

t k ktPoE q t Z Z  = + + +   (3) 

where 
( )

0
ˆ q , 

( )

1
ˆ q ,…, 

( )ˆ q

k  are estimated parameters. 

 

The application of QRM to maximum and minimum demand forecasts 

With the formulation (1), we can link 𝑞-th quantile of daily electricity demand to three (i.e., 𝑘 = 3) drivers 

of trends in the customer count 𝑍1𝑡 , energy consumption 𝑍2𝑡  and PV capacity 𝑍3𝑡 .  All seven QRM models 

with various covariate combinations are listed in Table 4. 

For a given quantile 𝑞, the model selection from those in Table 4 is based on the following process: 

i. selecting a QRM with the minimum Akaike’s information criteria (AIC) value from all 

candidate quantile regression models; 

ii. checking if the selected model is a valid model, which must have a positive and 

statistically significant coefficient for the customer connection and average demand if 

these terms are in the model, and a negative and statistically significant coefficient for 

PV capacity if that term is in the model.  If not, select the model with immediate 

smaller AIC. 

 
24 Y. Wang, N. Zhang, Y. Tan, T. Hong, D. D. Krischen, and C. Kang, “Combing probability load forecasts,” IEEE Trans. Smart Grid, vol. 10, 

pp. 3664–3674, 2019. 
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After the choice of the valid QRM, it can be used to estimate the quantile for a given probability of 
exceedance 𝑝 by (3).   

Since the quantile regression models in Table 4 are fitted to daily load data, estimated quantiles by (3) with 

respective 𝑝 =0.10, 0.50 and 0.90 are the 0.90-th, 0.50-th and 0.10-th quantile of daily load, not the 

quantiles (POE10, POE50 and POE90) for annual maximum or minimum demand.  As such, the POE 

forecasts of summer, winter maximum and minimum demand based on the valid QRM are obtained 

following the process: 

1. Find summer maximum demand in the historical period from year 2008 to 2020 

2. Calculate quantiles 𝑞0.10 , 𝑞0.50, 𝑞0.90 of summer maxima at the 0.90, 0.50 and 0.10 levels 

3. Forecasts of PoE10(t), PoE50(t) and POE90(t) of annual maximum/minimum demand are 

obtained by using (3) with 𝑞 equals to quantiles 𝑞0.90, 𝑞0.50, 𝑞0.10, respectively.  That is,  

 0.90 0.90 0.90( ) ( ) ( )

0 1 1
ˆ ˆ ˆ10( )

q q q

t k ktPoE t Z Z  = + + +  (4) 

 0.50 0.50 0.50( ) ( ) ( )

0 1 1
ˆ ˆ ˆ50( )

q q q

t k ktPoE t Z Z  = + + +   (5) 

 0.10 0.10 0.10( ) ( ) ( )

0 1 1
ˆ ˆ ˆ90( )

q q q

t k ktPoE t Z Z  = + + +   (6) 

4. Adjust 𝑞0.10, 𝑞0.50, 𝑞0.90 slightly and refit the valid QRM to make the estimated POE values to 

more realistic in case it is needed. 

Table 4. Candidate quantile regression models used to fit the substation data 

Model Notation Model specification  Covariate 

I M1 𝑄𝑦(𝑞|𝑍1𝑡  , 𝑍2𝑡 , 𝑍3𝑡) = 𝛽0
(𝑞)

+ 𝛽1
(𝑞)

𝑍1𝑡 Z1t 

II M2 𝑄𝑦(𝑞|𝑍1𝑡  , 𝑍2𝑡 , 𝑍3𝑡) = 𝛽0
(𝑞)

+ 𝛽2
(𝑞)

𝑍2𝑡  Z2t 

III M3 𝑄𝑦(𝑞|𝑍1𝑡  , 𝑍2𝑡 , 𝑍3𝑡) = 𝛽0
(𝑞)

+ 𝛽3
(𝑞)

𝑍3𝑡  Z3t 

IV M12 𝑄𝑦(𝑞|𝑍1𝑡  , 𝑍2𝑡 , 𝑍3𝑡) = 𝛽0
(𝑞)

+ 𝛽1
(𝑞)

𝑍1𝑡 + 𝛽2
(𝑞)

𝑍2𝑡 Z1t & Z2t 

V M23 𝑄𝑦(𝑞|𝑍1𝑡  , 𝑍2𝑡 , 𝑍3𝑡) = 𝛽0
(𝑞)

+ 𝛽2
(𝑞)

𝑍2𝑡 + 𝛽3
(𝑞)

𝑍3𝑡 Z2t & Z3t 

VI M13 𝑄𝑦(𝑞|𝑍1𝑡  , 𝑍2𝑡 , 𝑍3𝑡) = 𝛽0
(𝑞)

+ 𝛽1
(𝑞)

𝑍1𝑡 + 𝛽3
(𝑞)

𝑍3𝑡 Z1t & Z3t 

VII M123 𝑄𝑦(𝑞|𝑍1𝑡  , 𝑍2𝑡 , 𝑍3𝑡) = 𝛽0
(𝑞)

+ 𝛽1
(𝑞)

𝑍1𝑡 + 𝛽2
(𝑞)

𝑍2𝑡 + 𝛽3
(𝑞)

𝑍3𝑡 Z1t , Z2t & Z3t 
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5.4 System total maximum and minimum demand forecast 

This section provides the results of system total maximum and minimum demand forecasts using EVT and 

QRM models (Section 5.3) based on three drivers of trends in the customer count 𝑍1𝑡 , average demand 𝑍2𝑡  

and PV capacity 𝑍3𝑡  (Figure 5.5).  The aim is to provide the evidence that both EVT and QRM can provide 

realistic maximum and minimum demands, and good interpretation of how customer connection, energy 

consumption and PV capacity impact system total maximum and minimum demands. 

 

 

Figure 5.5 Daily time series of observed (black) and trends (red) in customer count (top panel), energy 

consumption (middle panel) and PV capacity (bottom panel) for the system.  The vertical 

dash line is location of date on 30 June 2020. 

 

Key messages from three drivers:  

• Customer connection trend has been seen to increase in historical period (1 January 2008 to 30 

June 2020) and it has been forecasted to be increasing up to 1.215 million by 20 June 2025 

• Energy consumption trend has increased since 2009 until 2016 and it has been decreasing 
since then and is forecasted to keep decreasing to 39439201 (kWh) by 30 June 2020. 

• PV capacity trend has been seen to increase in historical period and is forecasted to keep 

increasing to 2324928kVA by 30 June 2025. 
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5.4.1 System summer maximum demand forecast 

System summer (November to April) system maximum demand forecasts in terms of PoE10, PoE50 and 

PoE90 at day 𝑡, based on the fitted EVT model, are 
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.38

POE( , ) 3937 6.55 10 ln 1 1
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−
−= +  −

+
−  


− −  

with 𝑝 = 0.90, 0.50 and 0.10, respectively.  Figure 5.6 shows the corresponding estimated PoE10, PoE50 

and PoE90 curves by using daily values of the consumption trend 𝑍2𝑡  and the PV capacity trend 𝑍3𝑡  (Figure 

5.5) from the observed period from 1 November 2009 to 30 April 2020 and the forecasting period from 1 

November 2020 to 30 April 2025.  The observed summer maximum demand is spread evenly over the 

POE50 level.  Maximum demand in 2016 hot summer is above the POE10 level and below the POE90 level 

in 2019 summer, implying a skill for probabilistic summer maximum demand based on the preferred model.   

 

Figure 5.6 System summer maximum demand forecast via EVT model.   

 

The above preferred model also provides an interoperation of how the changes in the energy consumption 

trend 𝑍2𝑡  and the PV capacity trend 𝑍3𝑡  influences the system summer maximum demand.  For instance, 

for a give probability p (= 0.90, 0.50 and 0.10) the POEs forecasts have positive linear relationship 𝑍2𝑡  and 

positive relationship in exponential with the PV capacity trend 𝑍3𝑡 .  As such, the slightly increasing POE50 

forecast with large uncertainty characterised by increasing POE10 and decreasing POE90 forecasts is due to 
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the combined influence of the decreasing energy consumption trend and increasing PV capacity in summer 

over the forecasted period from 1 November 2020 to 30 April 2025. 

5.4.2 System winter maximum demand forecast 

System winter (May to October) maximum demand forecasts in terms of PoE10, PoE50 and PoE90 at day 𝑡, 

based on the fitted QRM model, are: 

5

1 2PoE90( ) 428 0.00123 3.53 10t tt Z Z−= + +   

 
5

1 2PoE50( ) 306 0.00153 3.29 10t tt Z Z−= + +   

 
5

1 2PoE10( ) 416 0.00241 1.23 10t tt Z Z−= + +    

Figure 5.7 shows the corresponding estimated PoE10, PoE50 and PoE90 curves by using daily values of the 

customer connection trend 𝑍1𝑡  and consumption trend 𝑍2𝑡  (Figure 5.5). 

 

Figure 5.7 System winter maximum demand forecast via quantile regression models. 

The observed winter maximum demand is spread evenly over the POE50 level.  Three winter maximum 

demands in 2017, 2018 and 2020 fall between the forecasted POE50 and POE10 levels as expected, 

implying a skill for probabilistic summer maximum demand based on the preferred model.  The increasing 

POE10 forecast and decreasing POE50 and POE90 forecasts are due to the combined influence of the 



 

 

Page 36 

increasing trend in the customer connection trend 𝑍1𝑡  and decreasing consumption trend 𝑍2𝑡  through the 

preferred QRM.  Note that the PV capacity trend 𝑍3𝑡  is not included in the selected model for system 

winter maximum demand, implying that the impacts of PVs are not significantly in winter. 

5.4.3 System daytime minimum demand forecast 

System daytime (6am to 6pm) annual minimum demand forecasts in terms of PoE10, PoE50 and PoE90 at 

day 𝑡, based on the fitted EVT model, are 
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with 𝑝 = 0.90, 0.50 and 0.10, respectively. 

 

Figure 5.8 System daytime minimum demand forecasts based on the fitted EVT model. Vertical lines are 

Figure 5.8 shows the corresponding estimated PoE10, PoE50 and PoE90 curves by using daily values of the 
consumption trend 𝑍2𝑡  and the PV capacity trend 𝑍3𝑡  (Figure 5.5) from the observed period from 1 January 

2009 to 30 June 2020 and the forecasting period from 1 July 2020 to 30 June 2025.  The observed daytime 

minimum demand spreads evenly over the POE50 level and falls within forecasted POE90 and POE10 levels, 

implying a skill for probabilistic summer maximum demand based on the preferred model. 

The above preferred model also provides an interoperation of how the changes in the energy consumption 

trend 𝑍2𝑡  and the PV capacity trend 𝑍3𝑡  influences the system daytime maximum demand.  For instance, 
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for a give probability p (= 0.90, 0.50 and 0.10) the POEs forecasts have positive linear relationship with 

energy consumption trend 𝑍2𝑡 , the forecasted POE levels decrease 56.56 10− MW per kWh.  The influence 

of the PV capacity trend 𝑍3𝑡  can be interpreted as two components: the linearly negative impact with the 

POEs declined 41.92 10− MW per kVA increase in 𝑍3𝑡  and the exponentially positive influence with 
75.57 10− MW per kVA increase in 𝑍3𝑡 .  As such, the forecasted PoE levels are declined with large 

uncertainty characterised by expending difference in POE10 and POE90 forecasts because of the combined 

influence of the decreasing energy consumption trend and increasing PV capacity in summer over the 

forecasted period from 1 January 2020 to 30 June 2025.  The forecasted POE50=705MW with 

POE90=636MW and POE10=922 MW by 30 June 2025. 

5.5 Substation maximum and minimum demand forecasts 

Zone substation maximum demand contains non-coincident maximum and coincident demand measures 

by summer and winter maximum demand.  Zone substation non-coincident maximum demand measures 

the season maximum demand at a zone substation.  Zone substation coincident demand refers to demand 

at each zone substation at the time of the occurrence of whole system maximum demand.25 Typically, non-

coincident and coincident maximum demands occur at different times and may occur on different days. 

Zone substation minimum demand refers to the annual daytime (6am to 6pm) minimum demand at a zone 

substation. 

Zone substation maximum and minimum demand forecasts are developed by EVT and QRM models 

(Section 6.3) fitted to daily data based on three drivers of trends in the customer count 𝑍1𝑡 , average 

demand 𝑍2𝑡  and PV capacity 𝑍3𝑡 .   

In the following sections, we demonstrate that both EVT and QRM can provide realistic substation 

maximum and minimum demands, and good interpretation of how customer connection, energy 

consumption and PV capacity through a case study of maximum and minimum demand forecasts at 

substation Arkana (A). 

Figure 5.9 shows time series of observed (black) and fitted trends (red) for customer count, panel (a), 

energy consumption, panel (b), and solar PV capacity, panel (c), for Arkana substation.  It is evident that the 

fitted trend (red carves) has captured the step changes in customer counter, energy consumption and PV 

capacity due to the customer transfers on 1 December 2013 and 1 August 2015. 

 

 

25  Western Power measures whole system demand based on total supply from market generators at transmission and 

distribution network plus the remaining power supply from the large customers’ embedded generators after supplying their 

own load. 
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Figure 5.9 Time series of observed (black) and fitted trends (red) for customer count, panel (a), energy 

consumption, panel (b), and solar PV capacity, panel (c), for Arkana substation.26  

 

5.5.1 Non-coincident maximum demand forecast 

Arkana summer non-coincident maximum demand forecasts in terms of PoE10, PoE50 and PoE90 at day 𝑡, 

based on the fitted EVT model, are 
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with 𝑝 = 0.90, 0.50 and 0.10, respectively.   

Figure 5.10 shows the corresponding estimated PoE10, PoE50 and PoE90 curves by using daily values of the 
consumption trend 𝑍2𝑡  and the PV capacity trend 𝑍3𝑡  (Figure 5.9) from the observed period from 1 
November 2009 to 30 April 2020 and the forecasting period from 1 November 2020 to 30 April 2025.  A 
striking feature is that the fitted POE10, POE50, and POE90 values all show step changes corresponding to 
those in both 𝑍2𝑡  and 𝑍3𝑡  on 1 December 2013 and 1 August 2015. The observed summer maximum 
demand is spread evenly over the POE50 level, implying a skill for probabilistic summer maximum demand 
based on the preferred model. 

 
26  The vertical dashed line is the end of period for observed data on 30 June 2020. 
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The preferred model also provides an interoperation of how the changes in the energy consumption trend 
𝑍2𝑡  and the PV capacity trend 𝑍3𝑡  influences the Arkana summer maximum demand.  For instance, for a 

give probability p (= 0.90, 0.50 and 0.10) the POEs forecasts have positive linear relationship 𝑍2𝑡  and 

positive relationship in exponential with the PV capacity trend 𝑍3𝑡 .  As such, the slightly stabilizing POE50 

forecast with uncertainty characterised by increasing POE10 and decreasing POE90 forecasts is due to the 

combined influence of the decreasing energy consumption trend and increasing PV capacity in summer 

over the forecasted period from 1 November 2020 to 30 April 2025. 

 

Figure 5.10 Observed daily maximum demand (back dots) and forecasted PoE10 (red), PoE50 (orange) 
and PoE90 (blue) for summer maximum demand at Arkana (A) substation by EVT model. 

 

Arkana winter non-coincident maximum demand forecasts in terms of PoE10, PoE50 and PoE90 at day 𝑡, 

based on the fitted EVT model, are 

( ) 05

2

.185

POE( , ) 17.72 4.82 10 8.33 ln 1 1tt p Z p−= +  − − − −    

with 𝑝 = 0.90, 0.50 and 0.10, respectively.   

As shown in Figure 5.11, the fitted POE10, POE50, and POE90 values all show step changes corresponding 

to those in energy consumption trend 𝑍2𝑡  on 1 December 2013 and 1 August 2015. The observed winter 

maximum demand is spread evenly over the POE50 level and with one winter maximum demand above the 
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POE10 in 2020 and one below POE90 in 2014, implying a skill for probabilistic winter maximum demand 

based on the preferred model.  Note that the PV capacity trend 𝑍3𝑡  is not included in the selected model 

for Arkana winter maximum demand, implying that the impacts of PVs are not significantly in winter at 

substation Arkana.  

 

Figure 5.11 Observed daily maximum demand (back dots) and forecasted PoE10 (red), PoE50 (orange) 
and PoE90 (blue) for winter maximum demand at Arkana (A) substation by EVT model. 

 

5.5.2 Coincident maximum demand forecast 

Substation coincident incident maximum demand forecasts are developed by season using the QRM 

approach as described in section 6.3.5. 

Substation Arkana winter coincident maximum demand forecasts in terms of PoE10, PoE50 and PoE90 at 

day 𝑡, based on the fitted QRM model, are: 

1 2PoE90( ) 23.95 0.00075 0.000131t tt Z Z= − + +  

 
1 2PoE50( ) 47.43 0.00146 0.000138t tt Z Z= − + +  

 
1 2PoE10( ) 68.08 0.00205 0.000164t tt Z Z= − + +   
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Figure 5.12 shows the corresponding estimated PoE10, PoE50 and PoE90 curves by using daily values of the 

customer count trend 𝑍1𝑡  and consumption trend 𝑍2𝑡  (Figure 5.9) from the observed period from 1 

November 2009 to 30 April 2020 and the forecasting period from 1 November 2020 to 30 April 2025.  A 

striking feature is that the fitted POE10, POE50, and POE90 values all show step changes corresponding to 

those in both 𝑍1𝑡  and 𝑍2𝑡  on 1 December 2013 and 1 August 2015. The observed summer coincident 

maximum demand is spread evenly over the POE50 level, and the uncertainty of winter coincident 

maximum is also corrected captured by the fitted POE10 and POE90 levels, implying a skill for probabilistic 

summer maximum demand based on the selected QRM model. 

The stabilized POE10, POE50 and POE90 forecasts are due to the combined influence of the increasing 

trend in the customer connection trend 𝑍1𝑡  and decreasing consumption trend 𝑍2𝑡  through the preferred 

QRM.  Note that the PV capacity trend 𝑍3𝑡  is not included in the selected QRM, implying that the impacts of 

PVs are not significantly on summer coincident maximum demand at substation Arkana. 

 

Figure 5.12 Observed summer coincident daily maximum demand (back dots) and forecasted PoE10 

(red), PoE50 (orange) and PoE90 (blue) for summer coincident maximum demand at Arkana 

(A) substation by quantile regression model. 

 



 

 

Page 42 

 

Figure 5.13 Observed winter coincident daily maximum demand (back dots) and forecasted PoE10 (red), 

PoE50 (orange) and PoE90 (blue) for winter coincident maximum demand at Arkana (A) 

substation by quantile regression model. 

Arkana winter coincident maximum demand forecasts in terms of PoE10, PoE50 and PoE90 at day 𝑡, based 

on the fitted QRM model, are 

5

2PoE90( ) 14.10 4.92 10 tt Z−= +   

 
5

2PoE50( ) 20.98 3.96 10 tt Z−= +   

 
5

2PoE10( ) 30.87 2.57 10 tt Z−= +    

As shown in Figure 5.13, Figure 5.11, the fitted POE10, POE50, and POE90 values all show step changes 

corresponding to those in energy consumption trend 𝑍2𝑡  on 1 December 2013 and 1 August 2015.  The 

observed winter coincident maximum demand is spread evenly over the POE50 level and the is also 

corrected captured by the fitted POE10 and POE90 levels, implying a skill for probabilistic winter maximum 

demand based on the selected QRM model.  Note that the PV capacity trend 𝑍3𝑡  is not included in the 

selected QRM model for Arkana winter coincident maximum demand, implying that the impacts of PVs are 

not significantly on winter coincident maximum demand at substation Arkana.  
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5.5.3 Day-time minimum demand forecast 

Substation Arkana daytime (6am to 6pm) annual minimum demand forecasts in terms of PoE10, PoE50 and 

PoE90 at day 𝑡, based on the fitted EVT model, are 

( ) 5 4
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POE( , ) 4.16 2.80 10 6.09 10 2.68 ln 1 1t tt p Z Z p− −= − +  −  + − − −    

with 𝑝 = 0.90, 0.50 and 0.10, respectively. 

Figure 5.14 shows the corresponding estimated PoE10, PoE50 and PoE90 curves by using daily values of the 

consumption trend 𝑍2𝑡  and the PV capacity trend 𝑍3𝑡  (Figure 5.5) from the observed period from 1 January 

2009 to 30 June 2020 and the forecasting period from 1 July 2020 to 30 June 2025.  The observed daytime 

minimum demand spreads evenly over the POE50 level with uncertainty captured by the fitted POE10 and 

POE90 levels, implying a skill for probabilistic daytime maximum demand based on the preferred EVT 

model. 

 

Figure 5.14 Observed daily day-time minimum demand (grey dots), annual day-time minimum demand 

(blue dots) and forecasted PoE10 (green), PoE50 (orange) and PoE90 (green) for winter 

maximum demand at Arkana (A) substation by EVT model. Vertical dash lines are locations 

of date 31 December each year. 

The forecasted PoE50 is declined with small uncertainty characterised by the small difference in POE10 and 

POE90 forecasts because of the combined influence of the decreasing energy consumption trend and 
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increasing PV capacity trend.  As shown in Figure 5.14, Arkana daytime minimum demand has been 

declined in historical period and it is forecasted to below 0 MW by 30 June 2025. 

 

5.5.4 Transmission substation maximum and minimum demand forecasts 

A substation on the transmission network is typically customer owned.  Customers connected directly to a 

transmission substation are mainly large industrial types with usage profiles that are commonly stationary 

over time.  For these substations, extreme demand forecasts are expected to be relatively stationary, or 

changing with the average demand only.  This implies the EVT models fitted to a given transmission 

substation are expected to be either stationary (of the type mu0) or dependent on the trend in average 

demand only, which drives the location parameter of the model.  

Figure 5.15 shows coincident and noncoincident maximum demand forecasts in summer and winter for the 

Australian Fused Materials (AFM) substation.  As shown in the figure, summer and winter coincident 

maximum demands (red dots) are not the same as substation maximum in observed years (top panels).  

The AFM coincident maximum demand in both summer and winter is forecasted to be stable during the 

five-year forecast period with large difference between PoE10 and PoE90 bands.   

The location parameter of the model is dependent on the trend in average demand, implying that the 

summer forecast is driven by a flat trend in average demand. The observed that shows that the daily 

coincident maximum demand at AFM approached to zero MW when summer demand on the transmission 

system reached to the maximum in summers 2010, 2011 and 2012 (or winters 2008, 2010, 2011, 2012, 

2014 and 2015).  

The AFM non-coincident maximum demand in both summer and winter is forecasted to be stationary in 

the five-year forecasting period and with a large difference (~2MW) between PoE10 and PoE90 bands.  The 

EVT model is parameterised as a stationary GEV, which implies that PoEs of the AMF noncoincident 

maximum in summer and winter do not change during the five-year forecast horizon.  

Figure 5.16 shows day-time minimum demand forecasts at the AFM substation.  The PoE10, PoE50 and 

PoE90 of the day-time minimum demand at AFM are forecasted to be stationary in the five-year forecasting 

period.  As the EVT model is parameterised as a stationary GEV, the day-time minimum demand is forecast 

to be stationary.  The small uncertainty in terms of small difference between PoE10 and PoE90 is consistent 

with the well-known fact that the minimum demand has small variability for a given substation.  
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Figure 5.15 Observed daily coincident maximum demand (grey dots) and forecasted PoE bands for 

Australian Fused Materials (AFM) substation in summer (top left) and winter (top right) from 

2008 to 2025.  The lower panels are observed daily noncoincident maximum demand and 

forecasted PoE bands for AFM substation in summer (lower left) and winter (lower right).  

The vertical line represents the end of the observed summer training data on 30 April 2018 

and winter training data on 31 October 2017. 
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Figure 5.16 Observed daily day-time minimum demand (grey dots) and forecasted POE10 (red curve), 

POE50 (orange curve) and POE90 (blue curve) of annual noncoincident minimum demand 

forecast at Tx substation Australian Fused Materials (AFM) from 2008 to 2025.  The vertical 

line represents the location at end of the observed training data on 30 June 2018. 

 



 

 

Page 47 

6. Block load forecast 

Western Power connects many new customers every year. Most of these connections are small energy 

users that are suitably included in the base energy and load demand forecasts and do not need to be 

accounted for separately. Less frequently, Western Power is required to connect new customers that 

represent a material increase in both energy and demand. Western Power must also cater for existing 

customers that have expansion or contraction plans that could result in a material increase or decrease in 

demand above or below the base forecasts. These new and existing customer loads are collectively referred 

to as block loads.  

Once added to the base forecasts, a block load introduces an often-permanent step-change into the 

maximum demand of an otherwise smooth trend. Block loads minimum demand, for some substations, are 

managed via a ratio based on similar industry types. Such step-changes occur infrequently and are not 

easily accommodated by most statistical methods. 

Western Power uses a systematic approach to determine the potential block loads that are to be included 

in the energy and demand forecasts. This approach is intended to be consistent, systematic, consultative, 

evidence-based and is applied to qualifying customer applications to determine if they satisfy a set of pre-

defined conditions. 

The ‘likelihood to proceed’ is considered the most critical of these conditions. Western Power receives 

many applications for connection to the network. Only a few applications proceed that result in significant 

new loads on the network.  The forecast process runs an assessment and only includes those loads that are 

reasonably likely to proceed. This assessment requires an investigation and assessment of each potential 

block load’s information that is retrieved from multiple internal and external sources. The determination of 

likelihood to proceed often involves discussions with both internal and external stakeholders. For example, 

consultation occurs between Western Power’s Business Intelligence and Data Analytics function (BIDA) and 

the representatives form AEMO, Western Power’s Grid Transformation and Customer Service functions. 

The assessment of block loads produces a list of potential loads. These loads have been assessed with a 

high likelihood to proceed within the five-year forecast period and predict an energy and/or load demand 

potential that will materially affect the network and the corresponding base energy and load demand 

forecasts. 

6.1 Preparation of block load forecasts 

Western Power assesses applications for connection to the distribution and transmission network. All 

distribution connection applications that meet the conditions of a ‘non-competing application’27 are 

automatically cleared and approved for firm-access connection to the network and are subsequently 

regarded as part of the ‘natural load growth’ that is included in the developed base energy and demand 

forecasts. All competing applications are subject to a clearance and approval (to connect) process and are 

logged accordingly in the register load connections tracker. 

 

27  For further details refer to https://westernpower.com.au/faqs/connect-to-the-network/new-connection/what-is-a-non-

competing-application-threshold/ . All connection applications that are eligible for network tariffs RT1-RT6 (or 

equivalent e.g. RT13-RT16) and have a total load expectation not exceeding 1.5MVA for their National Metering 

Identifier (NMI) are considered part of the ‘natural load growth’. These connection applications are deemed as 

complying and are catered for by the developed base energy and load demand forecasts. 

https://westernpower.com.au/faqs/connect-to-the-network/new-connection/what-is-a-non-competing-application-threshold/
https://westernpower.com.au/faqs/connect-to-the-network/new-connection/what-is-a-non-competing-application-threshold/
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All competing applications in the register load connections tracker are further refined to exclude those in 

progress, not cleared or for feasibility study only. The assessment also excludes small connection 

applications, which have an immaterial effect on network demand. 28 

The forecasting processes also uses a list of potential large transmission connected projects that have a 

high ‘likelihood to proceed’ within the five-year forecast period. This list provides detailed information 

about each large transmission connected project. The forecast process conducts an independent 

assessment of the list, which includes a crosscheck with the information that is stored in Western Power’s 

customer relationship management application. 29  Any identified anomalies are discussed directly with the 

Customer Project Development team and the appropriate representative from the customer service 

function. 

 

  

 
28  All applications with an undiversified demand less than five megawatt are considered small connections and are 
excluded. The undiversified demand refers to a customer’s requested maximum demand, expressed in megawatt, for 
the potential load. The actual effect of the connection on the network is influenced by the relation between demand 
profile of existing loads and the new connection. The effect of new connection on network demand is typically less 
than the undiversified load demand and is referred to as diversified demand. 
29  Salesforce was Western Power’s customer relationship management application prior to the end of July 2019. It 
contained relevant customer and load information for potential major transmission connected projects. It was 
decommissioned and replaced with a new customer management system from August 2019. Salesforce was 
referenced for the block load forecast that was developed and used in 2019 medium-term forecasts. 
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7. Reactive power forecast 

Reactive power30 influences the operation of power system in four ways: 

Some loads consume reactive power, so it must be provided by some source. 

The transmission and distribution lines consume reactive power, so it must be provided by some 

source. Lines also provide some reactive power due to their capacitance, which offsets their 

consumption of reactive power. 

The flow of reactive power from supplies to the sinks causes additional heating of the lines and voltage 

drops in the network. 

The generation of reactive power can limit the generation of real power.31 

The flow of reactive power on the network is managed by synchronous generators, reactors and capacitors. 

Sufficient reactive power is needed to be provided to loads and lines in the network, but excessive reactive 

power causes excess heating and voltage drops. If not managed suitably, voltage drops can result in voltage 

collapse and instability of the network. 

Forecast of reactive power is required to assist Western Power with the operation and planning of the 

network. The method produces four reactive power forecasts for each substation. It comprises two 

forecasts for reactive power coincident with substation minimum and maximum demand that is coincident 

with system minimum and maximum demand and two other forecasts coincident with substation minimum 

and maximum demand.  

The data generating process for reactive power forecast is complex because charging current is a localised 

measure. Western Power does not measure the movement of power across the network but the current on 

each section of the network contributes to the overall reactive power supply. Also, individual network 

planning decisions (e.g. which type of underground cable to install) and operational decisions (e.g. which 

switches should be changes to balance the network) influence reactive power injection. Finally, individual 

customer choice (e.g. use of pool pumps and washing machines) influences reactive power absorption. The 

supply and absorption of reactive power by transmission and distribution lines have a complex nature. 

Several variables influence the balance of supply and demand for reactive power, including line 

capacitance, reactance, voltage level, current and length. From a broad perspective the uncompensated32 

reactive power throughput on the network can be depicted using the below equation: 

 

𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟 =  𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ×  𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 –  𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 

Much of the data required to directly estimate the supply and consumption of reactive power on the 

network is difficult to obtain. For example, the network charging capacity is partially a function of the type 

 
30  Reactive power has its origin in the phase shift between sinusoidal voltage and current waveforms. When 
current wave to a device lags the voltage wave, it consumes reactive power.  
For a detailed discussion refer to Sauer P.W. (2005) Reactive Power and Voltage Control Issues in Electric Power 
Systems. In: Chow J.H., Wu F.F., Momoh J. (eds) Applied Mathematics for Restructured Electric Power Systems. Power 
Electronics and Power Systems. Springer, Boston, MA. 
32  Uncompensated reactive power refers to the amount of reactive power that would have travelled over a 
particular section of network if the local capacitor banks and/or reactors were not running. It is a measure of the 
underlying reactive power supply and absorption before being influenced by network operation controls. 
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and length of conductors, which change due to changes to network design, augmentations and the 

replacement of overhead network with underground cables.33 

Instead of a fundamental model, the forecast employs a partial-linear model using proxy values for the 

drivers of reactive power: 

𝑄𝑝 = 𝛽0
𝑝

+ 𝛽1
𝑝

𝑁𝑀𝐼 + 𝑓𝑝(𝐷) + 𝜖𝑝  

where, 

𝑝 is the estimated 𝑝th quantile, and 0 < 𝑝 < 1 indicates the proportion of the population scores 

(e.g., daily reactive power Q) below the quantile 𝑝, 

𝑄𝑝 is the 𝑝𝑡ℎ quantile level of reactive power (Q), expressed in mega Volt-Amps-Reactive 

(MVAr).   We forecast the 𝑝𝑡ℎ quantile associated with the POE10, POE50 and POE90 levels, 

NMI is the customer count measured by the number of NMIs (proxy for the network length) 

D is coincident demand, expressed in MW (approximation for charging current) 

𝑓𝑝(𝐷) is the smooth function of D, given 𝑝.  It is data-driven relationship in the model, which can 
be linear and non-linear 

𝜖𝑝  is residual error, often assumed to be a Gaussian process.  

The model is static in nature by assuming that there will be no significant changes to the relation between 

explanatory variables and reactive power. A model is fit separately to each substation to account for the 

local characteristics of the downstream network. 

The model uses NMI count as a reasonable approximation for growth in the network length, solar PV 

capacity and average energy consumption as reasonable approximations for customer absorption of 

reactive power, and coincident demand as a reasonable approximation for charging current. 

Reactive power has a quadratic relation with load and line charging current.34 With increased penetration 

of rooftop solar PV in the distribution system, the flow of power can reverse, and the model should account 

for this change in the flow of power. The linear model developed above cannot suitably account for this 

effect. A separate estimation was conducted to estimate the line charging current of the distribution 

network at each feeder and substation. This provided an estimate of a floor to limit the decrease of reactive 

power on feeders and substations. 

Estimation of line charging current 

Line charging current is a function of the conductor type, length and voltage level. A linear 

regression was conducted to model reactive power using the length of several conductor and cable 

types and voltage level as explanatory variables. The model results estimated the minimum reactive 

power coincident with substation or feeder minimum demand periods. 

 

 

33  Underground cables have high capacitance and generally supply reactive power to the network. 

34  An improvement to the forecast of reactive power in the future can be provided by using squared demand in the forecast of 

reactive power. 
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The forecast of reactive power will be improved in several ways. Some of the proposed future 

improvements to the model are: 

Using squared demand in the forecast to better reflect the functional form of charging current  

Including an estimation of the changes to reactive power due to changes in voltage 

Including a breakdown of NMI growth by subdivision and infill, and 

Including an analysis of planned changes to engineering standards.35 

 

 

 

35  Engineering standards, such as Volt/Var compensation, are likely to have a significant influence on reactive power 

requirements. It is not yet possible for Western Power to precisely model the effect of these changes, because the voltage 

data at each customer connection is not available. 
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A.1 Project references 

Project Wiki page 

Details about the implementation of forecasts is provided on ‘Customer Technology Energy Demand’ Wiki 
page: 

http://wiki/display/BIDA/Customer+Technology+Energy+Demand  

Forecast results 

Forecast results are presented on Qlik dashboards: 

https://qlik.ads.westernpower.com.au/sense/app/b8ce8f91-46c6-4087-9efd-6278f27afcd3 

Results are also summarised in the EDM document 49890576: 

http://edm.westernpower.com.au/otcs/cs.exe/Overview/50074955 

Project implementation 

The project is implemented in SAS Forecast Studio, SAS Enterprise Guide and R. 

SAS Forecast Studio was used to create customer number forecasts. The project is titled 

CUSTED19_CUSTOMER_COUNT_NOL3. 

Energy forecasts were conducted in SAS Enterprise Guide. The project folder is titled CusTED2019: 

SAS Path: Western Power\Business Intel & Data Analytics\CusTED19 

Maximum and minimum demand forecasts were implemented in R. The project folder is: 

\\ho-fs1\SHARE\Business Intelligence and Data Analytics\02_Analytics_Projects\CUSTED19 

All codes implemented in R and relevant markdown files were packaged and placed on the EDM 

(#50830691): 

http://edm.westernpower.com.au/otcs/cs.exe?func=ll&objaction=overview&objid=50830691 
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