

# Updated Dynamic Refund Recommendation to MAC October 2013



- Dynamic Refund Factors
  - Maintain Dynamic Refund Factor based on system conditions (not discussed further in this slide-set)
- Minimum Refund Factor
  - Modify previous recommendation reducing minimum refund factor from 1.0 down to 0.25
    - Reduce level of arbitrary financial risk during periods where economic refund factor is below 1.0
  - Introduce rolling criteria to apportion access to refund factors below 1.0 to units based on their average availability (excluding PO) over the prior 90 day period
    - Addresses the leakage risk (capacity value for effective non-delivery due to late or extensive FO at 0.25)
- Refund Revenue Recycling
  - Retain recycling based on availability
  - Institute a prior-dispatch-based rebate eligibility criterion
    - Recognise that FO while running and starting up are material causal factors for FO
    - Increase materiality of rebate pool by limiting rebate eligibility to facilities dispatched in previous 30 days

Minimum Refund Factor Analysis

## Minimum Refund Factor Analysis (2009/10)



- Hits minimum level 96.3% of the year
- No change to exposure during key periods
- Does not hit higher RF levels

**Culmulative Refund Collected** 



### Minimum Refund Factor Analysis (2010/11)



- Hits minimum level 93.4% of the year
- No change to exposure during key periods
- Hits highest RF levels





#### Refund revenue is lower – making recycling more important

| Capacity Year                                                   | 2009/10 | 2010/11 | 2011/12 |
|-----------------------------------------------------------------|---------|---------|---------|
| Capacity Credit (MW)                                            | 5079    | 5223    | 5442    |
| MRCP (AUD/MW)                                                   | 142,200 | 173,400 | 164,100 |
| Current Regime                                                  |         |         |         |
| RCP                                                             | 108,459 | 144,235 | 131,805 |
| Refund (million AUD)                                            | 6       | 10      | 11      |
| Refund as % of total<br>Capacity Credit at RCP                  | 1.04%   | 1.32%   | 1.59%   |
| Dynamic Refund Regime (with max refund factor 6 and floor 0.25) |         |         |         |
| RCP                                                             | 101,464 | 159,678 | 135,618 |
| Refund (million AUD)                                            | 1       | 5       | 2       |
| Refund as % of total<br>Capacity Credit at RCP                  | 0.27%   | 0.58%   | 0.29%   |

Note: WA Biomass and the HECTs were excluded from the analysis.

Refund Revenue Recycling

- Original Proposal
  - To recycle refund revenue to all available capacity
- Issues Arising
  - Weaker incentive due to broad application of rebate eligibility
  - Concern that refund exposure is driven more by dispatch than by existence (though not 100% by either)
- Approach
  - Review data further
  - Determine rebate eligibility based on having been dispatched in prior 30 days
- Provides opportunity for average or better capacity to cover refund exposure through rebates, while concentrating rebates on capacity that is actively presented to the market

#### Took a further look at the relationship between FO and reserve capacity



Note: no unit appears to have declared FO without having run at least sometime during the year

The Lantau Group

#### 8

Failure to start typically have

/shorter FO

#### Considered broader FO experience across markets globally

- Substantial variation in treatment of FO
  - Range of definitions
  - Ability to respond to "strong commercial drivers" is relevant
  - Ability to operate until at least the next low demand period or weekend
  - Some problems can be fixed quickly and may not be counted at all (or noticed)
- Operational problems dominate
  - Fuel supply
  - Boiler issues
  - Turbine issues
  - Vibration
  - Leakage
- Failure to start is the most common peaker problem:
  - In all units, FTS is typically shorter duration (1 to 4 hours)

## Typical FO duration is relatively short (<4 or <8 TI)

• "baseload"



Short FO periods align with start-up issues as a predominant causal factor

#### Typical FO duration is relatively short (<4 or <8 TI)

• "baseload"



Short FO periods align with start-up issues as a predominant causal factor

#### **Facility Level Analysis**

• Baseload:



Baseload FO will generally be during running, ramping or startup – no matter what the excess status Peakers tend to have more FO in lower FC periods FO data for peakers implies running or starting-related FO

#### **Facility Level Analysis**

Baseload:



Conclusion: modify the availability-based rebates to incorporate an eligibility criterion related to prior dispatch

#### **Rebate Eligibility**

- Refund exposure can occur anytime, but is influenced by stress (starting, running, ramping etc.)
  - A high LF unit will generally be dispatched in all TI, and so will always have refund and rebate exposure
  - A low LF unit will have lower refund exposure due to lower operational demands
- A pure availability-based rebate allows low LF capacity to earn rebates to cover refund exposure – but introduces the problem that units with no operational exposure (and thus materially lower refund risk) also earn rebates
- A pure dispatch based rebate ignores fact that FO can extend over to periods a low LF unit would never have been dispatched (and thus rebates could not have been earned to cover risk)
- Proposal reflects these factors by establishing a rolling 30 day rebate eligibility window based from last dispatched TI
  - on average, a facility has to earn rebates for 15 trading intervals in order to recover 1 TI refund at the 0.25 factor level in CY 2010/11,
  - on average a facility has to earn rebates for 36 trading intervals in order to recover 1 TI refund at the 0.25 factor level in CY 2009/10.

#### Comparison of Capacity Eligible for Rebate (% of System Capacity Credit)



 Dispatch-triggered, availability-based rebate criteria reduces the amount of capacity eligible for rebate, compared to Pure Availability criteria, enhancing the rebate incentive effect, particularly in years with higher excess reserve capacity

#### Adjusted minimum RF for prior period FO experience

- Given a minimum refund factor of 0.25, it remains possible that a unit could earn capacity credits despite contributing no capacity value over an extended period
- Proposed modification to *minimum* refund factor
  - 0.25 applies if a unit has no FO in prior 90 days
  - 1.0 applies if a unit has been on FO the entire prior 90 days
  - Linear interpolation in between
- The impact concentrates on units with exceptional situations such as delayed market entry
- Otherwise, it enhances incentive to return to operational status with a more reliable unit
  - (as FO experience after return to operations is penalised somewhat more)
- Under virtually all cases the impact is small but aligns with correct incentives

#### Cumulative Net Exposure of Baseload Facilities (per MW)



2000

-2000

-4000

G

1-0ct-10

1-Dec-10

1-Nov-10

Current

1-Jan-11

1-Feb-11

RC=6 & RF=0.25

1-Mar-11

1-Apr-11

1-May-11

1-Jun-11

1-Jul-11

1-Aug-11

0

- Although BW2 BLUEWATERS G1 has aboveaverage FO rate, it has high load factor. Rebate is greater than the penalty on FO.
- MUJA has high FO rate and low LF. As a result, its net ٠ exposure is negative always.

Note: System average PO and FO rates are 15.4% and 2.0% respectively

1-Sep-11

1-0ct-11

#### Cumulative Net Exposure of Baseload Facilities (per MW)

BW2\_BLUEWATERS\_G1 ( PO = 2.6% ; FO = 4.7% ; LF = 91.1%) 4000 Cul Net Exposure per MW (\$) 2000 0 -2000 -4000 1-Apr-10 1-Jun-10 1-Jul-10 1-Sep-10 1-Dec-09 1-Jan-10 1-0ct-10 1-Nov-09 l-Aug-10 L-May-10 L-Oct-09 1-Feb-10 1-Mar-10 RC=6 & Adjusted RF RC=6 & RF=0.25 Current

- ALINTA\_PNJ\_U1 has a low FO rate, low PO rate and high LF, which results in positive net exposure.
- BW2\_BLUEWATERS\_G1 has much higher FO rate relative to system average, and so pays out refund.
- MUJA has very high PO rate and is not subject to both refund and rebate for a prolonged period and so, its exposure is rather neutral.

Note: System average PO and FO rates are 13.0% and 1.5% respectively



MUJA\_G5 ( PO = 48.9% ; FO = 0.7% ; LF = 28.0% )



#### Cumulative Net Exposure of Peaking Facilities (per MW)

ALINTA WGP GT ( PO = 1.9% ; FO = 1.4% ; LF = NEWGEN\_NEERABUP\_GT1 ( PO = 6.2% ; FO = 0.0%; LF = 4.0%) 0.6%) 4000 4000 Cul Net Exposure per MW (\$) Cul Net Exposure per MW (\$) 2000 2000 0 0 -2000 -2000 -4000 -4000 1-Nov-10 1-Jan-11 1-May-11 1-Jul-11 1-Aug-11 1-Sep-11 1-0ct-11 1-Dec-10 1-Jan-11 1-Apr-11 1-Jul-11 1-Aug-11 1-Sep-11 L-Oct-10 L-Nov-10 l-Dec-10 1-0ct-10 1-Feb-11 1-Mar-11 1-Apr-11 1-Jun-11 1-Feb-11 1-May-11 1-Jun-11 L-Mar-11 RC=6 & RF=0.25 Current Current Although ALINTA WGP GT has below-average FO rate, PINJAR\_GT11 ( PO = 53.0% ; FO = 0.1% ; LF = net pay-out exposure depends on when FO occurs 0.6%) 4000 NEWGEN NEERABUP GT1 has excellent performance ٠ 2000 and is rewarded from the refund recycling.

 Although PINJAR\_GT11 also has a low FO rate, it is on PO for a long time and not eligible for recycling during those periods.

Note: System average PO and FO rates are 15.4% and 2.0% respectively



1-0ct-11

#### Cumulative Net Exposure of Peaking Facilities (per MW)



•

•

- Eligibility for rebates based on having been dispatched for any TI in the preceding 30 days
- Can choose to compete for dispatch to earn rebates
- Capacity that is dispatched earns rebates for the next thirty days
- In a normal year, with little excess reserve capacity, most units will be dispatched over the course of the year and thus can benefit from some rebate benefits to offset refund risk
- Successful compliance of semi-annual IMO operating tests will automatically let the capacity to earn rebate for two months.

End

- The dynamic reserve capacity price also aligns with value
  - Although ALINTA\_PNJ\_U1 has better overall performance in CY 2009/10 than CY 2010/11, the cumulative net exposure is higher in the latter CY. This is because in CY2010/11 (1) average refund factor is higher, (2) amount of capacity in the rebate pool is lower, (3) unit rebate is higher.



#### <u>CY2009/10</u>

CY2010/11

#### Some tendency evident when reserve capacity is lower



**30 Day Rolling Period** 



**30 Day Rolling Period** 

