
Model Adequacy Test Background 
This appendix provides background information for a number of aspects of the model adequacy test. 

Data 

We use monthly data from January 1969 to December 2013 from SIRCA’s Share Price and Price 

Relative (SPPR) database to evaluate the ability of a number of different pricing models to forecast 

equity returns. 

The model that the ERA uses to estimate the cost of equity is a version of the SL-CAPM.  This model 

implies that variation in required returns across equities will be completely explained by variation in 

betas across equities.  So a sensible way of constructing portfolios to be used in testing the ability of 

the model to forecast equity returns is to form portfolios, like Black, Jensen and Scholes (1972) and 

Fama and MacBeth (1973), on the basis of past estimates of beta. 

Forming portfolios on the basis of past estimates of beta 

To form portfolios on the basis of past estimates of beta, we begin by extracting data from January 

1969 to December 2013 for individual stocks from the SPPR database.  The SPPR database does not 

provide market capitalisations before December 1973 and so we do not begin to record the returns 

to the portfolios that we construct until January 1974.  We use past estimates of betas to allocate 

stocks to portfolios, however, and so we use data from before January 1974 to determine in which 

portfolios to place stocks in the early years of the time series that we construct.  To minimise the 

impact of market microstructure effects, at the end of each year we use past data to estimate the 

betas only of stocks that are in the top 500 by market capitalisation.  We choose the top 500 

because the All Ordinaries Index is constructed from the top 500 stocks.   

We form a number of value-weighted portfolios.   First, we form a value-weighted portfolio of the 

top 500 stocks by market capitalisation and use the portfolio as a proxy for the market portfolio.  

Second, we form value-weighted portfolios on the basis of past beta estimates.  At the end of 

December each year we use data for the prior five years to estimate the betas of all stocks relative 

to the market portfolio, dropping those that do not have a full 60 months of data.  We then place 

the stocks into 10 portfolios on the basis of the estimates and record the returns to these portfolios 

for each month of the following year.  So, for example, we compute beta estimates using data from 

January 1969 to December 1973 for stocks that are in the top 500 by market capitalisation at the 

end of December 1973.  We allocate these stocks to 10 portfolios on the basis of these estimates 

and then record the returns to the portfolios for each month of 1974.  Next, we compute beta 

estimates using data from January 1970 to December 1974 for stocks that are in the top 500 by 

market capitalisation at the end of December 1974, allocate these stocks to 10 portfolios on the 

basis of the estimates and then record the returns to the portfolios for each month of 1975.  And so 

on.  Thus we form portfolios in a way that is similar to the manner in which Black, Jensen and 

Scholes (1972) and Fama and MacBeth (1973) form portfolios. 

Industry portfolios 

We also use the returns to industry portfolios provided by SIRCA.  These portfolios also display a 

considerable variation across the portfolios in beta.  There are, however, two drawbacks to using the 

industry returns that SIRCA provides.  First, industry portfolios are not as well diversified as 



portfolios formed on the basis of past estimates of beta – which are diversified across industries.  

This lack of diversification lowers the power of tests that use individual portfolios.  Second, the way 

in which SIRCA forms the portfolios may lead to a survivorship bias (SIRCA (2013)).
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Imputation credits 

We compute the returns to the portfolio that we use inclusive of a value assigned to imputation 

credits.  In particular, we assign a value of 35 cents to each dollar of imputation credits distributed.  

Thus the partially franked returns that we use are the unfranked returns plus 35 percent of the 

difference between the fully franked and unfranked returns. 

Risk-free rate 

We use as a measure of the risk-free rate the yield, computed on a monthly basis, on a 10-year 

Commonwealth Government bond.  We extract the yields on these bonds from the Reserve bank of 

Australia. 

Missing observations 

Some of the industry returns are missing.  To compute Wald statistics that take into account the fact 

that some of the returns are missing, we use the following procedure. 

Let N  be the number of portfolios, and let tN K−  be the number of missing forecast errors in 

month .t   Also let tJ  be an n-dimensional identity matrix whose jth column is eliminated if the jth 

forecast error is missing at time .t   tJ  will be an tN K×  matrix.  Consider the model: 

,t tf α ε= +  (1) 

where tf  is an 1N ×  vector of forecast errors, α  is an 1N ×  vector of mean forecast errors and tε  

is an 1N ×  vector of disturbances.  The vector of sample mean forecast errors, computed using all 

available data, will be: 
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If ( )E 0t t wε ε −′ =  for 0w >  and the distribution of tf  is independent of whether the data are 

missing, then the variance-covariance matrix of the estimator (2) will be given by: 
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 SIRCA (2013) notes that: 

 

‘all indices based on GICS rely on industry definitions obtained since July 2001.  Even so, many of the 

GICS based indices report values back to January 1974.  Index values before July 2001 have been 

generated by imputing GICS codes back through time.  GICS codes were extended back through time 

for company name segments with the same ASX industry classification as was present when GICS 

were first assigned.  The assumption behind this was that unchanged ASX classification implied 

unchanging GICS codes.  Although this method identifies companies whose industry interests are 

similar to those held later, it introduces implicit survivor biases.  Biases arise because companies 

changing industry focus are not tracked in earlier periods.  Nor are companies that delist before July 

2001 because they are not present when GICS are first assigned and so are ineligible for GICS 

industry membership.  Survivor biases can be expected to increase the further back in time present 

day GICS are imputed.’ 
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If the proportion of data for each portfolio that are missing is independent of the sample size, then 

under the usual regularity conditions: 
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will be a consistent estimator for the variance-covariance estimator (3).  Here: 
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If, again, the proportion of data for each portfolio that are missing is independent of the sample size, 

then under the usual regularity conditions: 
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will be asymptotically 2
Nχ  under the null hypothesis that the vector mean forecast errors 0.α =   

The Black and the SL-CAPM 

Two of the models that we use are empirical versions of the Sharpe-Lintner Capital Asset Pricing 

Model (SL-CAPM) and the Black Capital Asset Pricing Model (CAPM). 

The SL-CAPM implies that: 

1 1E ( ) E ( ),t jt jt t mtz zβ− −=  (7) 

where 1E (.)t−  denotes an expectation formed on all that is known at time 1t −  , mtz  is the 

return to the market portfolio from time 1t −  to t  in excess of the risk-free rate, quoted at 

time 1t −  and to be earned from time 1t −  to ,t   
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and jtz  is the excess return to portfolio j  from time 1t −  to .t  

The Black CAPM implies that: 



1 1 0 1E ( ) (1 )E ( ) E ( ),t jt jt t t jt t mtz z zβ β− − −= − +  (8) 

Australian regulators have not used the Black CAPM explicitly but have suggested that they will use 

the model implicitly.  The Australian Energy Regulator (2013), for example, states that: 

‘To the extent the Black CAPM may have some support, we will use the model (in addition 

to other evidence) to inform the selection of the equity beta.’ 

A regulator using the Black CAPM explicitly would set the cost of equity for a firm equal to: 

0
ˆ ˆˆ ˆ(1 ) ,jt t jt mtz zβ β− +  (9) 

where 0ˆ tz  denotes the regulator’s assessment of the zero-beta premium to be earned from 1t −  to 

t  and ˆmtz  is the regulator’s assessment of the market risk premium.  The regulator might set ˆmtz  

and 0ˆ tz  equal to the means of all past excess returns to the market portfolio and all past estimates 

of the zero-beta premium but may choose to use other information. 

The expression (9), however, can also be rewritten as: 
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Thus a regulator using the Black CAPM implicitly could use (10) to set the cost of equity for a firm. 

We label the adjusted estimate of beta given by (10) ‘betastar’.  The estimates of betastar that we 

use employ estimates of the zero-beta premium and market risk premium that are the means of all 

past excess returns to the market portfolio and all past estimates of the zero-beta premium that use 

individual security data provided by NERA (June 2013, October 2013) and updated by NERA to the 

end of 2013.  We describe below how NERA has updated estimates of the market risk premium 

(MRP).  The details of how NERA estimates the zero-beta premium are contained in its June 2013 

report Estimates of the zero-beta premium. 

We compute the standard error of betastar using the delta method (see, for example, Hayashi 

(2000)).  Betastar will be a function of the ordinary least squares (OLS) estimate of the beta of the 

portfolio computed using monthly data from t T−  to 1,t −  an estimate of the zero-beta premium 

computed using monthly data from t S−  to 1t −  and an estimate of the MRP computed using 

annual data from month t M−  to 1,t −  where .t M S T> > >   The standard error of betastar will 

depend in part on an estimate of the covariance matrix of a vector containing these three estimates.  

The difficulties in estimating the covariance matrix are that (a) the estimates use samples that only 

partially overlap and (b) two of the estimates are based on monthly data while one of the estimates 

is based on annual data.  We circumvent these difficulties using methods similar to the ones that we 

describe above for dealing with missing data. 



NERA update of the MRP 

NERA’s estimates of the MRP are based on estimates that Brailsford, Handley and Maheswaran 

(2008, 2012) produce. 

The data that Brailsford, Handley and Maheswaran (2008, 2012) employ from 1883 to 1957 are 

constructed from: 

• the Commercial and Industrial index assembled by Lamberton (1958) from 1882 to 1936;
 
 

• the Sydney Stock Exchange (SSE) All Ordinary Shares price index from 1936 to 1957;  and 

• the Lamberton/SSE yield series from 1883 to 1957;
 
 

Brailsford, Handley and Maheswaran (2008, 2012) lower the yields provided by Lamberton (1961) 

between 1883 and 1957 by multiplying them by 0.75.  NERA (June 2103, October 2013) shows that 

while some downward adjustment of Lamberton’s yield series is warranted, data from original 

sources indicate that the adjustment should be smaller than the adjustment that Brailsford, Handley 

and Maheswaran make.  NERA shows that an estimate of the downwards bias generated by 

inappropriately adjusting Lamberton’s yield series is 36 basis points for the period 1883 to 2012.  

NERA (October 2013) provides a time series of returns to the market portfolio from 1883 to 1957 

that use adjustments to the dividend yields that Lamberton supplies that are indicated by data 

drawn from original sources.     

From 1958 to 2010, the data that NERA uses are identical to the data that Brailsford, Handley and 

Maheswaran (2012) use while the data that NERA uses from 2011 to 2013 are updates of the data 

that Brailsford, Handley and Maheswaran employ.  We explain below how NERA updates the data 

from 1958 to 2010 that Brailsford, Handley and Maheswaran supply. 

NERA extracts daily data (for days on which the market was open) for the All Ordinaries Index (AS30) 

and the All Ordinaries Accumulation Index (ASA30) from Bloomberg.   

Like Brailsford, Handley and Maheswaran (2008, 2012), NERA extracts imputation credit yields for 

December of each year from the Australian Taxation Office 

(https://www.ato.gov.au/rates/company-tax---imputation--average-franking-credit---rebate-

yields/?page=2#List_of_yields). 

Like Brailsford, Handley and Maheswaran (2008, 2012), NERA takes 90-day bank accepted bill rates, 

the yields on three-month Treasury notes and the yields on 10-year Commonwealth Government 

bonds from the Reserve Bank of Australia (http://www.rba.gov.au/statistics/index.html). 

Finally, like Brailsford, Handley and Maheswaran (2008, 2012), NERA uses the percentage change in 

the All Groups CPI for Australia from the last quarter of one year to the last quarter of the next year, 

provided by the Australian Bureau of Statistics, as a measure of inflation 

(http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/6401.0Sep%202014?OpenDocument). 

Like Brailsford, Handley and Maheswaran (2008, 2012), NERA computes the annual with-dividend 

return to the market portfolio in data from 1981 onwards as the percentage change from one year 

to the next in the average December level of the All Ordinaries Accumulation Index. 



To produce gross returns, NERA adds to the with-dividend return 35 per cent of the credit return – 

that is, the ratio of the credits provided by the All Ordinaries within a year to the level of the index at 

the start of the year.   

Like Brailsford, Handley and Maheswaran (2008, 2012), NERA computes an estimate of the MRP by 

averaging the difference between each year’s gross return and the yield on a 10-year 

Commonwealth Government bond at the end of each year.   

The gross return to the All Ordinaries from December 2013 to December 2013 was 18.66 per cent 

while the yield on a 10-year Commonwealth Government bond at the end of 2013 was 4.23 per 

cent.  Thus the excess return to the market portfolio computed in the same way that Brailsford, 

Handley and Maheswaran (2008, 2012) compute the return was 14.43 per cent – considerably above 

its long-run average.  As a result, estimates of the MRP rise with the addition of 2013’s data.  The 

table below shows how estimates of the MRP have been affected by the addition of 2013’s data for 

a variety of sub-periods that the Australian Energy Regulator (AER) has in the past used. 

Table 1 

Estimates of the MRP 

Period MRP estimate Standard error Period MRP estimate Standard error 

1883-2012 6.50 1.45 1883-2013 6.56 1.44 

1937-2012 5.67 2.26 1937-2013 5.79 2.23 

1958-2012 6.16 3.02 1958-2013 6.31 2.97 

1980-2012 5.84 3.90 1980-2013 6.09 3.79 

1988-2012 5.12 3.68 1988-2013 5.48 3.55 

 

There are three points that are worth making about this table and these estimates. 

First, as the table above makes clear, estimates of the MRP are imprecise and estimates that use 

shorter time series are less precise than estimates that use longer time series.   

Second, the AER’s habit of using overlapping sample periods like those that appear in the table 

above amounts to placing a larger weight on more recent data than on older data.  While this may 

appear sensible, the impact of weighting more recent data more heavily than older data is to reduce 

the precision of the estimates (see section 5 of NERA (June 2013)).  So we would not endorse this 

way of summarising the data. 

Thirdly, the estimates are based on arithmetic means.  While compounding these means would 

produce estimates that are biased, there is no evidence that the AER or ERA compounds the 

estimates (see section 4 of NERA (June 2013)). 

Testing whether forecasts of the return on equity are unbiased 

Rule 74 of the National Gas Rules, relating generally to forecasts and estimates, states: 

(1) Information in the nature of a forecast or estimate must be supported by a statement of the 

basis of the forecast or estimate. 

(2) A forecast or estimate: 



(a) must be arrived at on a reasonable basis; and 

(b) must represent the best forecast or estimate possible in the circumstances. 

Since it is difficult to see that a forecast of the return on equity that can be shown to be 

systematically biased could meet these criterion, we test whether forecasts of the return on equity 

are unbiased that use a number of different pricing models.  Our tests use two methods and we 

label these methods: Method A and Method B.  Method A uses explicit forecasts of the MRP, the 

zero-beta premium and the Fama-French high-minus-low (HML) and small-minus-big (SMB) 

premiums.  Method B, on the other hand does not do so.
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  Method B merely assumes that a 

regulator will use rational forecasts, that is, forecasts that are unbiased.
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Method A 

If forecasts generated by the SL-CAPM are unbiased, then: 

( )ˆ ˆE 0,jt jt mtz zβ− =  (12) 

where, again, ˆmtz  is the regulator’s assessment of the market risk premium and where ˆ
jtβ  is an 

estimate of the beta of portfolio j  that uses data from months up to (and including) month 1.t −     

We test whether the restriction (12) holds true by examining whether its sample counterpart: 
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differs significantly from zero.  The quantity (13) is the mean forecast error associated with forecasts 

of excess returns that use the SL-CAPM.
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We test the other pricing models in the same way.  Thus, for example, we test whether forecasts 

generated by the Black CAPM are unbiased by examining whether the mean forecast error: 
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differs significantly from zero.   

Note that Wald statistics that test whether the means of the forecast errors 

0
ˆ ˆˆ ˆ(1 ) , 1,2,...,jt jt t jt mtz z z j Nβ β− − − =  (15) 

differ from zero will be identical to Wald statistics that test whether the mean of the forecast errors 

* ˆ , 1,2,...,jt jt mtz z j Nβ− =  (16) 
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 Aside from forecasts of the zero-beta premium and MRP required to compute * .jtβ  

3
 See Keane and Runkle (1989) for a discussion of what it means for a forecast to be rational. 

4
 Since the risk-free rate for an investment made at the end of month 1t −  that matures at the end of month t  is known 

at the end of month 1,t − it is also the mean forecast error associated with forecasts of returns that use the SL-CAPM. 



differ from zero.  This is because 

*
0
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Method B 

If the regulator’s assessment of the market risk premium is rational, that is, unbiased, then: 

( ) ( )ˆE Emt mtz z=  (18) 

It follows that if forecasts generated by the SL-CAPM are unbiased and the regulator’s assessment of 

the market risk premium is rational, then: 

( )ˆE 0jt jt mtz zβ− =  (19) 

We test whether the restriction (19) holds true by examining whether its sample counterpart: 
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differs significantly from zero.  The quantity (20) is the mean difference between two zero-

investment strategies.   

The quantity jtz  is the return to a zero-investment strategy that is long portfolio j  and short the 

risk-free asset. 

The quantity ˆ
jt mtzβ  is the return to a zero-investment strategy that is long the market portfolio and 

short the risk-free asset. 

If the SL-CAPM generates forecasts that are unbiased and the regulator’s assessment of the market 

risk premium is rational, then the mean difference between the returns to the two zero-investment 

strategies should be zero. 

We test the other pricing models in the same way.  Thus, for example, we test whether forecasts 

generated by the Black CAPM are unbiased by examining whether the mean forecast error: 
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differs significantly from zero.  Here 0tz  and mtz  denote the realised returns to a zero-beta portfolio 

and the market portfolio from month 1t −  to month t  in excess of the risk-free rate and not the 

regulator’s assessments of what the zero-beta and market risk premiums should be based on data 

from months up to (and including) month 1.t − 5
    

Note that Wald statistics that test whether the means of the forecast errors 

* , 1,2,...,jt jt mtz z j Nβ− =  (22) 
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 In tests of (15) we use Fama-MacBeth estimates of the realised return to a zero-beta portfolio from month 1t −  to month 

t  in excess of the risk-free rate provided by NERA. 



differ from zero will not be identical to Wald statistics that test whether the mean of the forecast 

errors 

0
ˆ ˆ(1 )jt jt t jt mtz z zβ β− − −  (23) 

differ from zero because 

*
0

ˆ ˆ(1 )jt t jt mt jt mtz z zβ β β− + ≠  (24) 

Discussion 

We anticipate that the properties of tests that use Method A and the properties of tests that use 

Method B will display some interesting differences.  As Fama and French (1997) point out, much of 

the variability in estimates of the cost of equity that use either the SL-CAPM or the Fama-French 

three-factor model can be traced to variability in estimates of the market risk premium or the Fama-

French factor risk premiums.  We anticipate that variability in estimates of these premiums will 

lower the power of tests for individual portfolios that use Method A relative to tests that use 

Method B.  We anticipate, on the other hand, that the power of Wald joint tests that use Method A 

will differ little from the power of Wald joint tests that use Method B.  This is because Wald joint 

tests take into account common variation across portfolios. 

Assessing the power of the tests 

We conduct bootstrap simulations to examine the behaviour of the test statistics that we use and 

the power of our tests.   

To begin with, we use least squares to estimate for each of the N  portfolios that we employ the 

time series regression: 

 , 1,2,..., , 1,2,..., ,jt j j mt jtz z j N t Tα β ε= + + = =   (25) 

where jtz  and mtz  are the returns to portfolio j  and the market portfolio in excess of the risk-free 

rate, jα  and jβ  are an intercept and slope coefficient and jtε  is a regression disturbance.   

We place in each row of a ( 1)T N× +  matrix E  the vector 1 2ˆ ˆ ˆ( , ,..., , )t t Nt mtzε ε ε  where ˆ jtε  is a least 

squares residual.   

We simulate data for T months using the fitted regression, random drawings with replacement from 

the rows of the matrix E  and, initially, the restriction that: 

 0, 1,2,..., .j j Nα = =  (26) 

In this way we create data that may display heteroskedasticity but are drawn from a model in which 

the SL-CAPM is true.   

Where some of the data are missing we proceed in the following way.  First, we delete from the data 

all months where at least one portfolio return is missing.  Let the number of months of data that we 

delete be .M   Then the length of the time series with which we are left will be .T M−    



Second, we use these time series to estimate the parameters of the regression (25) and to produce a 

( ) ( 1)T M N− × +  matrix of residuals and market excess returns.   

Third, we simulate data for T months using the fitted regression, random drawings with 

replacement from the rows of the matrix and, initially, the restriction (26)    

Fourth, we eliminate observations that were missing in the original set of data.  In other words, we 

ensure that the simulated set of data has the same pattern of missing observations as the original 

set. 

To begin with, we examine the behaviour of the t-test statistics and Wald statistics under the null 

hypothesis that the SL-CAPM is true.  We then examine their behaviour under the alternative that 

the SL-CAPM is false.  The results of the simulations for the 10 portfolios formed on the basis of past 

estimates of beta appear in Table 2 below and indicate that while the finite-sample distributions of 

the test statistics that we use differ, under the null hypothesis, from their theoretical asymptotic 

counterparts, the differences are small. 

Table 2 

Distribution under the null of statistics used to t est the SL-CAPM: 
10 portfolios formed on the basis of past estimates  of beta 

Method A  Method B 

Probability that null is rejected 
at a significance level of 

 Probability that null is rejected 
at a significance level of 

Portfolio 0.995 0.975 0.025 0.005  0.995 0.975 0.025 0.005 

1 0.993 0.976 0.029 0.008  0.994 0.971 0.025 0.004 

2 0.997 0.976 0.037 0.007  0.995 0.971 0.029 0.006 

3 0.996 0.979 0.035 0.009  0.995 0.976 0.028 0.007 

4 0.996 0.975 0.031 0.008  0.994 0.972 0.029 0.005 

5 0.996 0.978 0.031 0.007  0.994 0.972 0.023 0.005 

6 0.997 0.979 0.035 0.008  0.994 0.974 0.027 0.006 

7 0.997 0.978 0.034 0.009  0.995 0.975 0.031 0.007 

8 0.996 0.978 0.029 0.007  0.995 0.974 0.021 0.005 

9 0.995 0.978 0.028 0.007  0.994 0.972 0.022 0.005 

10 0.995 0.975 0.026 0.006  0.994 0.972 0.023 0.005 

Method A  Method B 

Probability that null is rejected 
at a significance level of 

 Probability that null is rejected 
at a significance level of 

0.500 0.100 0.050 0.010  0.500 0.100 0.050 0.010 

Wald 0.540 0.124 0.065 0.017  0.535 0.122 0.065 0.017 

Notes: The results are generated using bootstrap simulations, 10, 000 replications and the returns to 
10 portfolios formed on the basis of past estimates of beta from January 1974 to December 2013.  
The theoretical asymptotic distribution of the t-test statistic used to test whether the mean forecast 
error for an individual portfolio differs from zero is standard normal.  The theoretical asymptotic 
distribution of the Wald statistic used to test whether the mean forecast errors for all 10 portfolios are 
zero is chi-squared with 10 degrees of freedom.   



The results of the simulations for the 26 industry portfolios appear in Table 3 below and indicate 

that the differences between the finite-sample distributions of the test statistics that we use and 

their theoretical asymptotic counterparts are larger than is documented in Table 2 for the 10 

portfolios formed on the basis of past estimates of beta. 

Table 3 

Distribution under the null of statistics used to t est the SL-CAPM: 
26 industry portfolios 

Method A  Method B 

Probability that null is rejected 
at a significance level of 

 Probability that null is rejected 
at a significance level of 

Portfolio 0.995 0.975 0.025 0.005  0.995 0.975 0.025 0.005 

1 1.000 0.998 0.142 0.048  0.993 0.972 0.024 0.006 
2 1.000 0.999 0.211 0.086  0.994 0.970 0.022 0.005 
3 1.000 0.999 0.203 0.085  0.994 0.973 0.023 0.004 
4 1.000 0.999 0.190 0.079  0.993 0.968 0.025 0.006 
5 1.000 0.999 0.169 0.065  0.995 0.976 0.026 0.006 
6 0.999 0.994 0.084 0.023  0.995 0.977 0.028 0.006 
7 0.999 0.993 0.084 0.022  0.991 0.966 0.024 0.004 
8 0.999 0.994 0.080 0.020  0.992 0.969 0.024 0.004 
9 1.000 0.995 0.089 0.028  0.995 0.975 0.030 0.007 

10 1.000 0.999 0.146 0.055  0.994 0.974 0.024 0.005 
11 0.999 0.995 0.091 0.023  0.992 0.966 0.015 0.002 
12 1.000 0.999 0.189 0.077  0.994 0.974 0.026 0.006 
13 1.000 0.999 0.178 0.073  0.996 0.976 0.031 0.007 
14 1.000 0.997 0.159 0.058  0.994 0.974 0.025 0.005 
15 0.999 0.995 0.093 0.024  0.995 0.973 0.021 0.004 
16 0.999 0.997 0.148 0.050  0.991 0.969 0.019 0.003 
17 1.000 0.999 0.189 0.081  0.996 0.976 0.033 0.009 
18 1.000 0.998 0.159 0.057  0.992 0.970 0.020 0.003 
19 1.000 0.999 0.215 0.095  0.994 0.976 0.033 0.007 
20 1.000 0.998 0.156 0.060  0.994 0.974 0.030 0.006 
21 0.999 0.994 0.088 0.024  0.994 0.971 0.025 0.006 
22 0.997 0.987 0.052 0.012  0.994 0.969 0.026 0.005 
23 0.999 0.995 0.096 0.027  0.992 0.973 0.027 0.005 
24 1.000 0.996 0.103 0.032  0.994 0.975 0.026 0.005 
25 1.000 0.997 0.144 0.049  0.993 0.971 0.022 0.004 
26 0.999 0.995 0.094 0.024  0.990 0.961 0.014 0.002 

Method A  Method B 

Probability that null is rejected 
at a significance level of 

 Probability that null is rejected 
at a significance level of 

0.500 0.100 0.050 0.010  0.500 0.100 0.050 0.010 

Wald 0.697 0.271 0.180 0.069  0.620 0.196 0.118 0.037 

Notes: The results are generated using bootstrap simulations, 10, 000 replications and the returns to 
26 industry portfolios from January 1974 to December 2013.  The theoretical asymptotic distribution of 
the t-test statistic used to test whether the mean forecast error for an individual portfolio differs from 
zero is standard normal.  The theoretical asymptotic distribution of the Wald statistic used to test 
whether the mean forecast errors for all 26 portfolios are zero is chi-squared with 26 degrees of 
freedom.    



We next examine the behaviour of the test statistics that we use under the alternative that: 

 0.005 (1 ), 1,2,..., .j j j Nα β= × − =  (27) 

In other words, we examine the behaviour of the test statistics under the alternative that the Black 

CAPM is true but the SL-CAPM is false and the zero-beta premium is 0.5 percent per month.   

The results of these simulations for the 10 portfolios formed on the basis of past estimates of beta 

appear in Table 4 below and the results for the 26 industry portfolios appear in Table 5. 

The results in Table 4 indicate that tests of the SL-CAPM that use Wald statistics and Method A have 

marginally more power than tests of the SL-CAPM that use Wald statistics and Method B.  On the 

other hand, tests of the SL-CAPM for individual portfolios that use t-statistics and Method B have, 

consistent with our intuition, substantially more power than tests that use t-statistics and Method A.  

Wald statistics are useful for indicating whether the forecasts that the SL-CAPM generates are 

unbiased.  t-statistics are useful for revealing for which portfolios any failure of the model to 

produce unbiased forecasts is important.  

Table 4 

Power of the test: 10 portfolios formed on the basi s of past estimates of beta 

Method A  Method B 

Probability that null is rejected 
at a significance level of 

 Probability that null is rejected 
at a significance level of 

Portfolio 0.100 0.050 0.010  0.100 0.050 0.010 

1 0.289 0.195 0.060  0.414 0.289 0.131 

2 0.215 0.131 0.051  0.316 0.210 0.077 

3 0.199 0.126 0.034  0.306 0.204 0.076 

4 0.133 0.067 0.015  0.179 0.101 0.033 

5 0.103 0.054 0.011  0.116 0.060 0.011 

6 0.098 0.048 0.011  0.106 0.057 0.012 

7 0.104 0.052 0.013  0.096 0.051 0.009 

8 0.118 0.068 0.015  0.179 0.105 0.033 

9 0.143 0.083 0.021  0.263 0.160 0.050 

10 0.132 0.072 0.016  0.176 0.102 0.028 

Wald 0.359 0.239 0.078  0.349 0.234 0.067 

Notes: The results are generated using bootstrap simulations, 10, 000 replications and the returns to 
10 portfolios formed on the basis of past estimates of beta from January 1974 to December 2013.  
Inference is drawn by comparing the t-test statistics and Wald statistic to their simulated distributions.   

Unlike the results in Table 4, the results in Table 5 indicate that tests of the SL-CAPM that use Wald 

statistics and Method B have marginally more power than tests of the SL-CAPM that use Wald 

statistics and Method A.  As in Table 3, however, tests of the SL-CAPM for individual portfolios that 

use t-statistics and Method B have substantially more power than tests that use t-statistics and 

Method A.  Table 5 also indicates that the power of the tests for individual industry portfolios is – 

aside from the portfolio of REITs (Industry 20) – low. 



Table 5 

Power of the test: 26 industry portfolios 

Method A  Method B 

Probability that null is rejected 
at a significance level of 

 Probability that null is rejected 
at a significance level of 

Portfolio 0.100 0.050 0.010  0.100 0.050 0.010 

1 0.112 0.061 0.013  0.115 0.057 0.010 
2 0.104 0.051 0.012  0.104 0.055 0.012 
3 0.109 0.061 0.012  0.142 0.076 0.019 
4 0.103 0.051 0.010  0.107 0.056 0.010 
5 0.106 0.053 0.009  0.117 0.061 0.012 
6 0.174 0.104 0.032  0.191 0.112 0.027 
7 0.106 0.059 0.014  0.101 0.056 0.013 
8 0.116 0.061 0.011  0.111 0.060 0.014 
9 0.109 0.056 0.013  0.117 0.060 0.012 

10 0.134 0.072 0.018  0.166 0.092 0.023 
11 0.159 0.090 0.027  0.180 0.109 0.040 
12 0.118 0.066 0.014  0.135 0.074 0.020 
13 0.100 0.052 0.011  0.106 0.056 0.010 
14 0.100 0.052 0.009  0.101 0.051 0.010 
15 0.111 0.061 0.015  0.114 0.063 0.014 
16 0.107 0.054 0.012  0.121 0.065 0.014 
17 0.104 0.055 0.011  0.115 0.062 0.013 
18 0.117 0.061 0.012  0.137 0.076 0.017 
19 0.112 0.056 0.012  0.120 0.061 0.014 
20 0.407 0.297 0.125  0.627 0.509 0.291 
21 0.106 0.056 0.009  0.105 0.054 0.009 
22 0.100 0.055 0.011  0.108 0.056 0.013 
23 0.105 0.053 0.012  0.106 0.051 0.010 
24 0.111 0.057 0.013  0.118 0.057 0.014 
25 0.121 0.067 0.013  0.137 0.074 0.018 
26 0.104 0.057 0.011  0.100 0.051 0.013 

Wald 0.353 0.228 0.078  0.370 0.254 0.103 

Notes: The results are generated using bootstrap simulations, 10, 000 replications and the returns to 
26 industry portfolios from January 1974 to December 2013.  Inference is drawn by comparing the t-
test statistics and Wald statistic to their simulated distributions.   

To examine the impact of excluding REITs from the tests, we also run bootstrap simulations in which 

REITs are removed.  The results of these simulations are briefly summarised in Table 6.  The table 

indicates that much of the power of Wald tests that use industry portfolios documented in Table 5 

can be traced to the inclusion of REITs.  Without REITs the power of the tests that use industry 

returns is substantially lower than the power of tests that use portfolios formed on the basis of past 

estimates of beta.  



Table 6 

Distribution under the alternative of statistics us ed to test the SL-CAPM: 
25 industry portfolios – REITs excluded 

Method A  Method B 

Probability that null is rejected 
at a significance level of 

 Probability that null is rejected 
at a significance level of 

0.100 0.050 0.010  0.100 0.050 0.010 

Wald 0.236 0.127 0.043  0.252 0.141 0.032 

Notes: The results are generated using bootstrap simulations, 1, 000 replications and the returns to 
25 industry portfolios (REITS excluded) from January 1974 to December 2013.  Inference is drawn by 
comparing the t-test statistics and Wald statistic to their simulated distributions.   

Industry test results 

Although we note that there are concerns over survivorship bias raised by the way in which SIRCA 

constructs industry returns and there are concerns over the power of tests that use industry returns, 

we nevertheless report, for completeness, the results of tests of the SL-CAPM that use these returns.   

The results of tests of the SL-CAPM that use industry returns appear in Table 7 below while the 

results of tests of the ERA’s version of the SL-CAPM, which uses the 95th percentile of an estimate of 

the distribution of an OLS estimator for beta rather than an estimate of the mean of the distribution 

(the OLS point estimate), appear in Table 8.   

As in the main body of the submission, the mean forecast errors in Tables 7 and 8 (and also, later, in 

Table 9) are formed as predicted minus observed which means that negative t-statistics are 

indicative that the model has under-predicted actual returns and the firm is receiving an NPV-

negative outcome.
 6

   

The results are similar to the results of tests that use the 10 portfolios formed on the basis of past 

estimates of beta.  There is a tendency for the SL-CAPM and the ERA’s version of the SL-CAPM to 

underestimate the returns required on low-beta portfolios.  In particular, the SL-CAPM 

underestimates the returns required on the Retailing, Pharmaceuticals and Utilities portfolios and 

the ERA’s version of the SL-CAPM underestimates the returns required on the Retailing and 

Pharmaceuticals portfolios.  The low power of the tests is illustrated by the fact that a Method B test 

of the null hypothesis that the ERA’s version of the SL-CAPM provides an unbiased estimator of the 

return required on a portfolio of utilities is unable to reject at the five percent level the null despite 

the mean forecast error associated with the estimator being 0.557 percent per month.  

  

                                                             
6
 Once more, DBP is aware that standard statistical convention has errors as actual minus predicted, not predicted minus 

actual, but this form allows the non-statistician reader to easily interpret our results in light of the ARORO. Presenting our 

results in a more conventional statistical manner would make no difference whatsoever to our conclusions.   



Table 7 

ERA’s version of the SL-CAPM 

  Method A  Method B 

Wald statistic  22.900  29.621 

  

Beta 

Mean 
forecast 

error 

 

t-test 

 Mean 
forecast 

error 

 

t-test 

Energy 1.595 0.168 0.444 0.042 0.146 

Materials 1.014 0.126 0.472 0.020 0.142 

Metals & mining 1.365 0.264 0.763 0.127 0.668 

Capital goods 0.920 0.085 0.288 -0.007 -0.039 

Commercial services 0.992 -0.136 -0.468 -0.216 -1.028 

Transportation 0.523 0.109 0.351 0.053 0.187 

Automobiles 0.669 0.069 0.174 -0.002 -0.007 

Consumer durables 0.734 0.650 1.560 0.541 1.478 

Consumer services 0.901 -0.039 -0.137 -0.239 -1.123 

Media 1.235 -0.362 -0.788 -0.479 -1.271 

Retailing 0.472 -0.573 -1.854 -0.654 -2.472 

Food retailing 0.840 -0.175 -0.750 -0.254 -1.483 

Food, beverage & tobacco 0.963 -0.189 -0.674 -0.279 -1.211 

Health care 0.958 -0.040 -0.141 -0.128 -0.590 

Pharmaceuticals 0.662 -0.599 -1.766 -0.660 -2.155 

Banks 1.082 -0.232 -0.852 -0.295 -1.356 

Diversified financials 0.868 -0.118 -0.465 -0.203 -1.238 

Insurance 1.031 -0.338 -0.899 -0.451 -1.515 

Real estate (excluding REITs) 1.339 0.080 0.240 -0.022 -0.096 

REITs 0.503 0.026 0.133 -0.015 -0.096 

Software & services 1.046 0.455 0.836 0.311 0.640 

Technology hardware 0.847 0.349 0.603 0.151 0.287 

Telecommunication services 1.932 0.105 0.179 -0.040 -0.075 

Utilities 0.865 -0.435 -1.272 -0.557 -1.958 

GICS code unassigned 1.364 0.163 0.435 0.008 0.032 

GICS code unknown 0.882 0.022 0.050 -0.039 -0.119 

Note: The tests use SIRCA data from January 1974 to December 2013. 

  



Table 8 

Vanilla SL-CAPM 

  Method A  Method B 

Wald statistic  24.278  44.276 

  

Beta 

Mean 
forecast 

error 

 

t-test 

 Mean 
forecast 

error 

 

t-test 

Energy 1.436 0.083 0.218  -0.043 -0.158 

Materials 0.959 0.096 0.361  -0.006 -0.045 

Metals & mining 1.295 0.226 0.653  0.091 0.484 

Capital goods 0.857 0.051 0.172  -0.036 -0.195 

Commercial services 0.909 -0.181 -0.622  -0.257 -1.236 

Transportation 0.380 0.032 0.102  -0.020 -0.070 

Automobiles 0.518 -0.012 -0.031  -0.074 -0.204 

Consumer durables 0.584 0.569 1.366  0.482 1.296 

Consumer services 0.721 -0.135 -0.482  -0.289 -1.346 

Media 1.067 -0.452 -0.985  -0.553 -1.458 

Retailing 0.347 -0.641 -2.071  -0.715 -2.598 

Food retailing 0.772 -0.212 -0.908  -0.286 -1.696 

Food, beverage & tobacco 0.866 -0.242 -0.860  -0.321 -1.417 

Health care 0.866 -0.090 -0.318  -0.174 -0.813 

Pharmaceuticals 0.523 -0.674 -1.988  -0.731 -2.378 

Banks 0.984 -0.285 -1.045  -0.342 -1.642 

Diversified financials 0.802 -0.154 -0.606  -0.234 -1.426 

Insurance 0.863 -0.429 -1.140  -0.539 -1.793 

Real estate (excluding REITs) 1.235 0.024 0.072  -0.075 -0.339 

REITs 0.440 -0.008 -0.043  -0.047 -0.297 

Software & services 0.817 0.331 0.609  0.205 0.417 

Technology hardware 0.608 0.222 0.382  0.086 0.161 

Telecommunication services 1.565 -0.093 -0.160  -0.242 -0.466 

Utilities 0.736 -0.504 -1.475  -0.615 -2.139 

GICS code unassigned 1.260 0.106 0.284  -0.042 -0.160 

GICS code unknown 0.841 -0.000 -0.001  -0.059 -0.183 

Note: The tests use SIRCA data from January 1974 to December 2013. 

  



Tests of a naïve model  

Pricing models are designed to explain the cross-section of mean returns.  Thus for any pricing 

model to be taken seriously, it should outperform a naïve model that restricts the returns required 

on all equities to be the same.  Within a regulatory context, any pricing model that a regulator uses 

to compute a return on equity should outperform a model that sets the return on equity equal to 

the return on the market. 

Table 9 below provides the results of tests of a naïve model that use the 10 portfolios formed on the 

basis of past estimates of beta.  The table shows that there is considerably less evidence against a 

naïve model than against the SL-CAPM – be it the conventional form of the model or the ERA’s 

version of the model.  The performance of a naïve model, though, comes close to matching the 

performances of the Black model and betastar model and we can provide some intuition for why this 

is so. 

The Black model and betastar model work by examining the historical relation between returns and 

estimates of beta and using this historical relation to forecast returns.  We emphasise that at each 

point in time, these models use only past data.  At each point in time, the past data suggest that 

there is little relation between returns and estimates of beta and so both models predict that, going 

forward, there should be little variation in the returns realised by the 10 portfolios formed on the 

basis of past estimates of beta.   

The predictions generated by a naïve model can also be generated by using the SL-CAPM and setting 

beta to one.  So this model too predicts that, going forward, there should be little variation in the 

returns realised by the 10 portfolios formed on the basis of past estimates of beta.   

Table 9 

Tests of a naïve model 

  Method A  Method B 

Wald statistic  10.011  9.992 

Portfolio  
Beta 

Mean 
forecast 

error 

 
t-test 

 Mean 
forecast 

error 

 
t-test 

1 0.536 -0.151 -0.759  -0.247 -1.327 

2 0.608 -0.181 -0.867  -0.277 -1.594 

3 0.576 -0.123 -0.578  -0.219 -1.354 

4 0.766 -0.262 -1.167  -0.358 -2.394 

5 0.857 -0.126 -0.495  -0.222 -1.519 

6 0.882 -0.009 -0.038  -0.105 -0.841 

7 0.966 0.167 0.607  0.071 0.503 

8 1.182 0.105 0.330  0.009 0.053 

9 1.362 0.416 1.168  0.320 1.567 

10 1.384 0.309 0.699  0.213 0.659 

Note: The tests use SIRCA data from January 1974 to December 2013. 

 



One-month versus five-year returns 

As noted in the report, we make use of month-ahead returns in our forecasts.  That is, we form 

estimates based on data up to month ,t  and then use these estimates to predict month 1,t +  

recording the error.  We are aware that the ERA sets rates of return for five years, not one month, 

but comparing predictions across an average of 60 months creates two significant issues.  Firstly, it 

reduces the number of independent data points to around 8, because we have around 40 years of 

data in our tests (the 60-month forward average from month t  has 59 of the same data points as 

the 60-month forward average from month 1),t +  and secondly it induces a great deal of serial 

correlation into the analysis which did not exist previously.  For aggregate measures such as the 

Wald test, removing this serial correlation proved highly problematic.  Both reduce the robustness of 

results, and thus we determined that, provided similar information is being provided by month-

ahead compared to (corrected for serial correlation) five-year average results, then using the month-

ahead model is likely to provide results about which inference is likely to be more robust. 

Figure 1 below presents a comparison of the results of a month-ahead and five-year ahead model.  

This is for the SL-CAPM and shows the uplift factor that would be required to remove bias in each 

model; the extent of the bias.  The pink bars are the uplift factor, and the blue bars are the 

confidence interval around the uplift factor given the uncertainty in the data; in essence, this is a 

graphical representation of the information contained in the t-statistic results.  As is clear, though 

the year-ahead results are less certain (wider confidence intervals) the scale of the bias in each case 

is the same. 

Figure 1 

Comparison of month-ahead and five-year-ahead model s 

 

Mincer-Zarnowitz tests 

Mincer and Zarnowitz (1969) provide a method for examining whether a forecast is both efficient – 

in that it uses appropriately all available information – and unbiased. 

Consider the set of regressions: 

 ˆ , 1,2,..., ,jt j j jt jtz z j Nγ δ ε= + + =  (28) 



where, again, jtz is the excess return to portfolio j  from month 1t −  to t , ˆ jtz  is a forecast of the 

return made at the end of month 1,t −  jγ  and jδ  are an intercept and slope coefficient and jtε  is a 

disturbance. 

If, using the terminology of Mincer and Zarnowitz, the forecast ˆ jtz is both unbiased and efficient, 

then the intercept jγ  should be zero and the slope coefficient jδ  should equal one.   

If the slope coefficient were not equal to one, then there would be a better way of using the 

information contained in the forecast.  If the slope coefficient were equal to one, then the intercept 

would be the mean forecast error and this should be zero for the forecast to be unbiased. 

We use the Generalised Method of Moments (GMM) to test whether the forecasts that we generate 

using a number of different pricing models are both efficient and unbiased.  Since under the null 

hypothesis, the intercept and slope coefficient in (28) should be identical across portfolios, we 

impose this restriction and estimate the system: 

 ˆ , 1,2,...,jt jt jtz z j Nγ δ ε= + + =  (29) 

We test whether 0γ =  and 1.δ =   

Daily, weekly and monthly returns 

Our estimates of the beta of a benchmark efficient entity use weekly data.  Here we explain why we 

choose to use weekly data. 

A general principle in statistics is that it is better to use more data than less – unless there is 

something wrong with the data.  Since there are more daily returns in any given period of time than 

there are weekly returns and more weekly returns than there are monthly returns, this principle 

suggests that it is better to use daily returns to estimate the equity beta of a firm than to use weekly 

returns and better to use weekly returns than to use monthly returns. 

There are two things, however, that may be ‘wrong’ with daily data.  First, the stock of the firm 

whose equity beta one wishes to estimate may trade only infrequently relative to the market as a 

whole.  If the stock trades infrequently, then least squares estimates of the equity beta of the firm 

computed from a simple regression of the return to the stock on the return to the market will be 

biased towards zero.  Scholes and Williams (1977) show how to circumvent this problem. 

Second, Gilbert, Hrdlicka, Kalodimos and Siegel (2014) show that difficulties in assessing the impact 

of market-wide news on individual firms can lead the returns to less complex firms predicting the 

returns to more complex firms.
7
  As a result, even in the absence of infrequent trading, the high-

frequency betas of some firms may fall below their low-frequency counterparts. 

In prior work, we have examined whether there is evidence of infrequent trading in the stocks of 

regulated energy utilities and have found none.  In particular, we have examined whether there is 

                                                             
7
 A complex firm is a firm for which it is costly to understand the impact on firm value of news about aggregate economic 

conditions.  Gilbert, Hrdlicka, Kalodimos and Siegel use Berkshire Hathaway, a multi-industry conglomerate, as an example 

of a complex firm and Exxon Mobil, an oil company, as an example of a firm that is less complex. 



evidence that the return to the market on one day or over one week can predict the return to the 

stock of a regulated energy utility on the next day or week.  We found no evidence of a significant 

predictive relation.  Using weekly data, Henry (2008) and the ERA (2013) similarly found no evidence 

of infrequent trading in the stocks of regulated energy utilities. 

Testing whether the issue that Gilbert, Hrdlicka, Kalodimos and Siegel (2014) raise is an important 

one for regulated energy utilities is difficult because of the relatively short time series with which 

one has to work.  Gilbert, Hrdlicka, Kalodimos and Siegel compare daily to quarterly estimates of 

betas using a large quantity of US data from 1969 to 2010 – a 42-year period.  There are few listed 

Australian regulated energy utilities with data available before 2000. 

To illustrate the gains to be had from using daily data to estimate the equity beta of a firm we 

present the results of some simulations.  For convenience, the simulations employ estimates of 

betas computed using continuously compounded returns.  Using continuously compounded returns 

is convenient because the continuously compounded return over a week is simply the sum of the 

continuously compounded returns over each day of the week.   

We assume that the return to asset j  from day 1t −  to day t  in excess of the risk-free rate, ,jtz  

satisfies that following relation 
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 (29) 

where mtz  is the excess return to the market portfolio from day 1t −  to ,t  jtε  is a disturbance and 

jβ  is the beta of the stock. 

Table 10 below shows the results of using weekly data to estimate the beta of the stock and of using 

daily data.  There is a small benefit to computing an estimate of the beta using the five alternative 

estimates of weekly returns and then averaging the estimates rather than using only one of the 

estimates.  The standard deviation of the estimator falls by about one sixth from around 0.062 to 

0.051.  There is a much larger benefit, though, to using daily data rather than averaging the five 

weekly estimates.  The standard deviation of the estimator falls by almost one half from 0.051 to 

0.028.   

Table 10 

Simulation results 

 Weekly data   

 

Monday-
to-

Monday 
Tues-to-

Tues 
Wed-to-

Wed 
Thurs-to-

Thurs 
Friday-to-

Friday Average 

 

Daily data 

Mean 1.000 1.000 1.000 1.000 1.001 1.000  1.000 

Std Dev 0.062 0.063 0.062 0.062 0.061 0.051  0.028 

Notes: The simulations are based on 10,000 replications each of which uses ordinary least squares 

and five years of data to estimate the beta of the stock. 



In practice, there appears to be only a relatively small difference between estimates that use daily 

data, estimates that use weekly data and estimates that use monthly data.  As one would expect, 

though, the standard errors of the daily estimates are far smaller than the standard errors of their 

weekly or monthly counterparts. 

Table 11 below provides estimates of the beta of a regulated energy utility that use a value weighted 

portfolio of the stocks, APA, AST, DUE, ENV, HDF and SKI and data from 1 September 2009 to 30 

September 2014. 

Our analysis suggests that there is little evidence to indicate that estimates of the equity beta of a 

regulated energy utility that use daily data suffer from any bias generated by infrequent trading.  It is 

difficult to know whether the estimates suffer from any bias produced by challenges that the market 

faces in determining the impact on the value of the utility of changes in aggregate economic 

conditions.  So a cautious approach would be to employ an estimate of the equity beta of a 

regulated energy utility that uses weekly data.  Our analysis indicates that an estimate of the equity 

beta of a regulated energy utility constructed using weekly data will be conservative – we find that 

an estimate of the equity beta of a regulated energy utility constructed using weekly data lies below 

an estimate constructed using daily data.  

Table 11 

Estimates of the equity beta of a regulated energy utility 

 Daily Weekly Monthly 

Beta estimate 0.621 0.550 0.504 

Standard error 0.023 0.049 0.094 

Notes: The estimates are computed using the re-levered returns to a value-weighted portfolio of 

regulated energy utilities and data from 1 September 2009 to 30 September 2014.  We re-lever the 

betas to a target debt-to-value ratio of 0.6. 
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